タグ「三角比」の検索結果

161ページ目:全1924問中1601問~1610問を表示)
上智大学 私立 上智大学 2011年 第2問
底面の円の半径が$3 \; \mathrm{cm}$,高さが$6 \; \mathrm{cm}$の直円錐を考える.直円錐の頂点を$\mathrm{P}$,底面の円の中心を$\mathrm{Q}$とし,線分$\mathrm{PQ}$を$2:1$に内分する点を$\mathrm{O}$とする.底面の円の円周を$C_1$,$\mathrm{O}$を通り底面と平行な平面が直円錐と交わってできる円の円周を$C_2$とする.$2$点$\mathrm{A}$,$\mathrm{B}$がそれぞれ$C_1$,$C_2$上を頂点$\mathrm{P}$から見て左回りに移動している.点$\mathrm{A}$の速さは$3 \pi \,\mathrm{cm}/$秒,点$\mathrm{B}$の速さは$\pi \,\mathrm{cm}/$秒であり,時刻$t=0$において,$3$点$\mathrm{P}$,$\mathrm{B}$,$\mathrm{A}$は一直線上にあるとする.

(1)$\mathrm{A}$の角速度は$[コ] \pi$ラジアン$/$秒であり,$\mathrm{B}$の角速度は$\displaystyle \frac{[サ]}{[シ]} \pi$ラジアン$/$秒である.ただし,$\mathrm{A}$の角速度とは,動径$\mathrm{QA}$が$1$秒間に回転する角の大きさのことであり,$\mathrm{B}$の角速度とは,動径$\mathrm{OB}$が$1$秒間に回転する角の大きさのことである.
(2)線分$\mathrm{AB}$の長さを時刻$t$の関数で表すと
\[ \sqrt{[ス]-[セ] \cos \frac{\pi}{2}t } \mathrm{cm} \]
である.
(3)$\cos \angle \mathrm{AOB}$を時刻$t$の関数で表すと
\[ \frac{[ソ]}{\sqrt{[タ]}} \cos \frac{\pi}{2} t \]
である.
(4)三角形$\mathrm{AOB}$の面積を時刻$t$の関数で表すと
\[ \sqrt{[チ]-[ツ] \cos^2 \frac{\pi}{2}t } \mathrm{cm}^2 \]
である.
(5)$3$点$\mathrm{A}$,$\mathrm{O}$,$\mathrm{B}$を含む平面を$S$とする.$\mathrm{Q}$を通り,$S$と直交する直線を$\ell$とし,$\ell$と$S$の交点を$\mathrm{H}$とする.$\displaystyle t=\frac{1}{3}$のとき,線分$\mathrm{QH}$の長さは
\[ \frac{[テ]}{[ト]} \mathrm{cm} \]
である.
上智大学 私立 上智大学 2011年 第1問
次の問いに答えよ.

(1)$x>1$とする.
\[ \sqrt{\log_2 x}>\log_2 \sqrt{x} \]
を満たす$x$の値の範囲は$[ア]<x<[イ]$である.
(2)$x$の関数
\[ y=\sqrt{2} (\sin x-\cos x)-\sin x \cos x+1 \quad \left( -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2} \right) \]
を考える.

(i) $t=\sin x-\cos x$とおくと,
\[ y=\frac{[ウ]}{[エ]}t^2+\sqrt{[オ]}t+\frac{[カ]}{[キ]} \]
が成り立つ.
(ii) $\displaystyle x=\frac{[ク]}{[ケ]} \pi$で$y$は最大値$[コ]+\sqrt{[サ]}$をとり,$\displaystyle x=\frac{[シ]}{[ス]} \pi$で$y$は最小値$\displaystyle \frac{[セ]}{[ソ]}$をとる.
日本女子大学 私立 日本女子大学 2011年 第1問
$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に向かい合う辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表す.$a=4$,$b=5$,$c=6$のとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{A}$の値を求めよ.
(2)この三角形の面積$S$を求めよ.
(3)この三角形の外接円の半径$R$を求めよ.
(4)この三角形の内接円の半径$r$を求めよ.
(5)図のように,この三角形の辺$\mathrm{AB}$と辺$\mathrm{AC}$の延長および辺$\mathrm{BC}$に接する円の半径$\ell$を求めよ.
(図は省略)
日本女子大学 私立 日本女子大学 2011年 第3問
平面上の$3$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(\cos 2\theta,\ \sin 2\theta)$,$\mathrm{C}(\cos 8\theta,\ \sin 8\theta)$を考える.

(1)$\sin \theta=t$とおくとき$\sin 3\theta$を$t$の式で表せ.
(2)線分の長さの和$\mathrm{AB}+\mathrm{BC}$を$t$の式で表せ.
(3)$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{3}$とするとき$\mathrm{AB}+\mathrm{BC}$の最大値を求めよ.
立教大学 私立 立教大学 2011年 第1問
次の空欄ア~スに当てはまる数を記入せよ.

(1)点$\mathrm{P}(1,\ 2)$と点$\mathrm{Q}(0,\ -1)$を通り,点$\mathrm{Q}$での接線の傾きが$2$である円の方程式は$(x-[ア])^2+(y-[イ])^2=[ウ]$である.
(2)$\overrightarrow{a}=(-2,\ 2,\ 1)$,$\overrightarrow{b}=(-5,\ 4,\ 3)$のとき,$\overrightarrow{a}$と$2 \overrightarrow{a}-\overrightarrow{b}$のなす角度は$[エ]$である.
(3)$\sin x+\sqrt{3} \cos x-2=0 (0<x<\pi)$を解くと,$x=[オ]$である.
(4)数列$\displaystyle \frac{1}{1},\ \frac{1}{2},\ \frac{2}{2},\ \frac{1}{3},\ \frac{2}{3},\ \frac{3}{3},\ \frac{1}{4},\ \frac{2}{4},\ \frac{3}{4},\ \frac{4}{4},\ \frac{1}{5},\ \cdots$に関して,$\displaystyle \frac{17}{30}$はこの数列の第$[カ]$項である.

(5)$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$に対して,$\omega^8$は$[キ]+[ク]i$となる.ただし$i$は虚数単位とし,キ,クは実数とする.
(6)$2$次方程式$x^2+ax+16=0$が整数解を持つような整数$a$のうち最大のものは$[ケ]$である.
(7)サイコロを$4$回振る.連続して偶数があらわれず,かつ連続して奇数もあらわれない確率は$[コ]$である.
(8)$x$が実数を動くとき,関数$f(x)=4^x+4^{-x}-5(2^x+2^{-x})+9$の最小値は,$[サ]$である.
(9)関数$f(x)$が等式$\displaystyle \int_a^x f(t) \, dt=x^2+(3a+8)x+4$をみたすとき,定数$a$の値は$[シ]$である.
\mon $6^{30}$は$[ス]$桁の整数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
学習院大学 私立 学習院大学 2011年 第2問
$x$が$x \geqq 0$を満たす実数全体を動くとき,関数
\[ y=e^{-\sqrt{3}x} \sin x \]
の最大値と最小値,およびそれらを与える$x$の値を求めよ.
学習院大学 私立 学習院大学 2011年 第3問
関数
\[ f(x)=\sin 3x+2 \cos 2x+4 \sin x \]
の区間$0^\circ \leqq x<360^\circ$における最大値,最小値とそれらを与える$x$の値を求めよ.
関西大学 私立 関西大学 2011年 第1問
次の$[ ]$をうめよ.

(1)$\displaystyle \frac{\pi}{12}=\frac{\pi}{3}-\frac{\pi}{4}$より,
\[ \cos \frac{\pi}{12}=\frac{\sqrt{[$①$]}+\sqrt{[$②$]}}{4} \]
である.ただし,$[$①$]$と$[$②$]$は整数であり,$[$①$]<[$②$]$とする.
(2)$0<\theta<\pi$かつ
\[ \cos \theta=\frac{\sqrt{[$①$]}-\sqrt{[$②$]}}{4} \]
であるとき,$\theta=[$③$]$である.
(3)適当な整数$a,\ b$に対し,$\displaystyle \cos \frac{\pi}{12}$は$4$次方程式
\[ ax^4+bx^2+1=0 \]
の解となる.このとき,$a=[$④$]$,$b=[$⑤$]$である.
関西大学 私立 関西大学 2011年 第4問
次の$[ ]$をうめよ.

(1)実数$x,\ y,\ z$が$\displaystyle \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10}$を満たしている.$x^3+y^3+z^3=-36$が成り立つのは,
\[ \frac{x+y}{5}=\frac{y+2z}{4}=\frac{z+3x}{10} \]
の値が$[$①$]$のときである.

(2)$\displaystyle x-y=\frac{\pi}{3}$であるとき,$\displaystyle \frac{\sin x-\sin y}{\cos x+\cos y}$の値は$[$②$]$である.

(3)座標空間における$2$点$\mathrm{A}(0,\ 1,\ 1)$,$\mathrm{B}(1,\ 3,\ 0)$を通る直線$\ell$を考える.$\ell$上の点$\mathrm{P}$において,原点$\mathrm{O}$と$\mathrm{P}$を結ぶ直線が直線$\ell$と垂直に交わるとき,点$\mathrm{P}$の$y$座標は$[$③$]$である.
(4)連立方程式$\left\{ \begin{array}{l}
4(\log_2x)^2+2 \log_2y=1 \\
x^2y=2
\end{array} \right.$を解くと,$x=[$④$]$,$y=[$⑤$]$である.
(5)$2$桁の自然数を$N$とし,$N$の$1$の位と$10$の位の$2$つの数の和を$T$とする.$\displaystyle \frac{N}{T}$の最小値は$[$⑥$]$である.
関西大学 私立 関西大学 2011年 第3問
$0 \leqq x<2\pi$であるとき,次の不等式を解け.

(1)$\sin x \leqq \cos x$
(2)$|\sin x| \leqq |\cos x|$
(3)$|\sin x| \leqq \cos x$
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。