タグ「三角比」の検索結果

154ページ目:全1924問中1531問~1540問を表示)
長崎大学 国立 長崎大学 2011年 第6問
次の問いに答えよ.

(1)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において次の不等式を解け.
\[ \sin x+\cos 2x \geqq 0 \]
(2)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において,曲線$y=\sin x$と曲線$y=-\cos 2x$および直線$\displaystyle x=-\frac{\pi}{2}$が囲む図形の面積$S$を求めよ.
(3)上の図形の$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の部分を$x$軸のまわりに1回転してできる回転体の体積$V$を求めよ.
九州工業大学 国立 九州工業大学 2011年 第1問
四面体$\mathrm{OABC}$は$\mathrm{OA}=\mathrm{OB}=2$,$\mathrm{OC}=1$,$\angle \mathrm{AOB}=\angle \mathrm{AOC}=60^\circ$をみたしている.線分$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{M}$とし,線分$\mathrm{OM}$を$s:1-s \ (0<s<1)$に内分する点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\angle \mathrm{BOC}=\theta \ (0^\circ<\theta<180^\circ)$として,次に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OH}}$,$\overrightarrow{\mathrm{CH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$と$s$を用いて表せ.
(2)$\overrightarrow{\mathrm{CH}} \perp \overrightarrow{\mathrm{OM}}$のとき,$s$を$\theta$を用いて表せ.
(3)$\overrightarrow{\mathrm{CH}} \perp \overrightarrow{\mathrm{OM}},\ \mathrm{BC}=\sqrt{\displaystyle\frac{17}{5}}$とするとき,$\cos \theta$と$s$の値を求めよ.
(4)$\overrightarrow{\mathrm{CH}} \perp \overrightarrow{\mathrm{OM}},\ \mathrm{BC}=\sqrt{\displaystyle\frac{17}{5}}$とするとき,四面体$\mathrm{OABC}$の体積$V$を求めよ.
九州工業大学 国立 九州工業大学 2011年 第2問
実数$\theta$に対して,行列$A$を$A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$とする.また,$n$を自然数とし,$A$の$n$乗を$A^n$で表す.次に答えよ.

(1)数学的帰納法により,すべての自然数$n$に対して
\[ A^n=\left( \begin{array}{cc}
\cos n\theta & -\sin n\theta \\
\sin n\theta & \cos n\theta
\end{array} \right) \]
が成立することを示せ.
(2)$\displaystyle \theta=\frac{\pi}{12}$とする.ある自然数$n$に対しては,行列$A^n$によって曲線$\displaystyle y=-\frac{1}{2x}$上の点が常に曲線$x^2-y^2=-1$上の点に移される.このような自然数$n$の最小値を求めよ.
愛媛大学 国立 愛媛大学 2011年 第2問
次の条件を満たす三角形$\mathrm{ABC}$はどのような三角形か.(1),(2),(3)それぞれの場合について,理由をつけて答えよ.ただし,三角形$\mathrm{ABC}$において,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に向い合う辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表す.また,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A,\ B,\ C$で表す.

(1)$\displaystyle \frac{b}{\sin A}=\frac{a}{\sin B}$
(2)$\displaystyle \frac{a}{\cos A}=\frac{b}{\cos B}$
(3)$\displaystyle \frac{b}{\cos A}=\frac{a}{\cos B}$
山梨大学 国立 山梨大学 2011年 第6問
原点を中心とする楕円$C$が媒介変数$t$を用いて
\[ x=2 \sin \left( t+\frac{\pi}{3} \right),\quad y=2 \sin t \]
と表される.ただし,$t$は$0 \leqq t \leqq 2\pi$とする.

(1)楕円$C$上の点$\mathrm{P}(x,\ y)$と原点の距離を$l$とする.$l^2$を媒介変数$t$を用いて表せ.
(2)楕円$C$の長軸の長さを求めよ.また,長軸と$x$軸のなす角度$\theta$を求めよ.ただし,$\theta$は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
(3)楕円$C$の第$1$象限にある部分と$x$軸および$y$軸で囲まれた図形の面積を求めよ.
浜松医科大学 国立 浜松医科大学 2011年 第3問
実数$k$は$\displaystyle \frac{\pi}{3} \leqq k \leqq \frac{\pi}{2}$の範囲にあるとする.
\[ \begin{array}{ll}
f(x)=\int_{-k}^k \sin (x-t) \cos t \, dt & (-k \leqq x \leqq k) \\
g(x)=\int_{-k}^k |\sin (x-t)|\cos t \, dt & (-k \leqq x \leqq k)
\end{array} \]
と定めるとき,以下の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{6} \right)$と$\displaystyle g \left( -\frac{\pi}{6} \right)$,$2$つの定積分の値をそれぞれ求めよ.
(2)差$f(x)-g(x)$は,区間$-k \leqq x \leqq k$で増加することを示せ.
(3)曲線$y=g(x)$の変曲点は何個あるか,調べよ.
浜松医科大学 国立 浜松医科大学 2011年 第1問
$2$次曲線$C$が媒介変数$\theta$を用いて,
\[ x=3+5 \cos \theta,\quad y=2+3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
と表されている.このとき,次の問いに答えよ.

(1)曲線$C$の方程式を$x,\ y$を用いて表せ.また,$C$を座標平面上に図示せよ.
(2)曲線$C$上の点$\mathrm{P}(3+5 \cos \theta,\ 2+3 \sin \theta)$における$C$の接線$\ell$の方程式は,
\[ \frac{\cos \theta}{5}(x-3)+\frac{\sin \theta}{3}(y-2)=1 \]
となることを示せ.
(3)曲線$C$の焦点を$\mathrm{F}_1$,$\mathrm{F}_2$とする.$i=1,\ 2$に対し,$\mathrm{F}_i$を通り,接線$\ell$に垂直な直線$m_i$の方程式を求めよ.
(4)$i=1,\ 2$に対し,直線$m_i$と$\ell$との交点を$\mathrm{Q}_i$とする.点$\mathrm{O}^\prime(3,\ 2)$とするとき,線分$\mathrm{O}^\prime \mathrm{Q}_i$の長さを求めよ.
(5)$\mathrm{P}$が曲線$C$を一周するとき,線分$\mathrm{Q}_1 \mathrm{Q}_2$の長さの最大値,最小値,およびそのときの点$\mathrm{P}$をそれぞれ求めよ.
山梨大学 国立 山梨大学 2011年 第1問
次の問いに答えよ.

(1)実数$x$に対して$[x]$を$m \leqq x<m+1$を満たす整数$m$とする.このとき
\[ \lim_{n \to \infty} \frac{[10^{2n} \pi]}{10^{2n}} \]
を求めよ.
(2)$\displaystyle y=\log \frac{\sqrt{1+e^x}-1}{\sqrt{1+e^x}+1}$を微分せよ.
(3)$0<x<\pi$において$\sin x+\sin 2x=0$を満たす$x$を求めよ.また,定積分$\displaystyle \int_0^\pi |\sin x+\sin 2x| \, dx$を求めよ.
(4)$A$を$2$次正方行列とする.$A^2-2011A+E=O$ならば$A$は逆行列を持つことを示せ.ただし,$E$は単位行列,$O$は零行列である.
山梨大学 国立 山梨大学 2011年 第3問
弧度法で表された$\theta$に対し,$M(\theta)=\left( \begin{array}{cc}
\cos \theta & -\displaystyle\frac{1}{2}\sin \theta \\
2 \sin \theta & \cos \theta
\end{array} \right)$とし,楕円$\displaystyle x^2+\frac{y^2}{4}=1$を$C$とする.

(1)$M(\theta)$で表される$1$次変換により$C$上の点は$C$上の点に移ることを示せ.
(2)弧度法で表された$\alpha,\ \beta$は$\displaystyle 0<\alpha<\frac{\pi}{4}$,$\displaystyle 0<\beta<\frac{\pi}{4}$を満たしているとし,$M(\alpha)$で表される$1$次変換により点$(\cos \beta,\ 2 \sin \beta)$が移される点を$\mathrm{A}$とする.$\mathrm{A}$を通り$y$軸に平行な直線と$C$で囲まれる部分のうち,原点$\mathrm{O}$を含まない方の面積$S$を求めよ.
防衛大学校 国立 防衛大学校 2011年 第5問
次の問に答えよ.

(1)定積分$\displaystyle I=\int_0^{\frac{\pi}{2}} \cos 2t \cos 4t \, dt$の値を求めよ.
(2)次の等式が$t$についての恒等式となるように,定数$a,\ b,\ c,\ d$の値を定めよ.
\[ \sin^4 t \cos^2 t=a+b \cos 2t+c \cos 4t+d \cos 2t \cos 4t \]
(3)$x=\cos^3 t$とおいて,定積分$\displaystyle J=\int_0^1 (1-x^{\frac{2}{3}})^{\frac{3}{2}} \, dx$の値を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。