タグ「三角比」の検索結果

152ページ目:全1924問中1511問~1520問を表示)
宮崎大学 国立 宮崎大学 2011年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(2)$y=e^{\sqrt{x}}$
(3)$\displaystyle y=\frac{\log |\cos x|}{x}$

(4)次の定積分の値を求めよ.

(5)$\displaystyle \int_0^{\frac{\sqrt{\pi}}{2}} x \tan (x^2) \, dx$
(6)$\displaystyle \int_0^{\frac{1}{3}} xe^{3x} \, dx$
(7)$\displaystyle \int_e^{e^e} \frac{1}{x \log x} \, dx$
(8)$\displaystyle \int_2^3 \frac{x^2+1}{x(x+1)} \, dx$
宮崎大学 国立 宮崎大学 2011年 第1問
次の各問に答えよ.ただし,$\log x$は$x$の自然対数を表す.

(1)次の関数を微分せよ.

(2)$y=e^{\sqrt{x}}$
(3)$\displaystyle y=\frac{\log |\cos x|}{x}$

(4)次の定積分の値を求めよ.

(5)$\displaystyle \int_0^{\frac{\sqrt{\pi}}{2}} x \tan (x^2) \, dx$
(6)$\displaystyle \int_0^{\frac{1}{3}} xe^{3x} \, dx$
(7)$\displaystyle \int_e^{e^e} \frac{1}{x \log x} \, dx$
(8)$\displaystyle \int_2^3 \frac{x^2+1}{x(x+1)} \, dx$
宮崎大学 国立 宮崎大学 2011年 第4問
座標平面上に点A$(2,\ 0)$をとる.円$C:x^2+y^2=1$上の任意の点P$(\cos \theta,\ \sin \theta) \ (0 \leqq \theta < 2\pi)$における接線を$\ell$とする.直線$\ell$上に点Qを直線AQと$\ell$が直交するようにとる.ただし,直線$\ell$が点Aを通るときは,点Qは点Aであるとする.このとき,次の各問に答えよ.

(1)点Qの座標を,$\theta$を用いて表せ.
(2)線分PQを,点Pが原点Oに一致するように平行移動したとき,点Qが移動した点をR$(\theta)$とする.ただし,点Pと点Qが一致するときは,点R$(\theta)$は原点とする.このとき,点R$(\theta)$の軌跡は円になることを示し,その中心の座標と半径を求めよ.
宮崎大学 国立 宮崎大学 2011年 第5問
方程式$\tan x=x$について,次の各問に答えよ.ただし,必要であれば,$\displaystyle 0<x<\frac{\pi}{2}$を満たす$x$について,不等式$\sin x <x < \tan x$が成り立つことを用いてもよい.

(1)各自然数$n$について,$\displaystyle n\pi-\frac{\pi}{2}<x<n\pi+\frac{\pi}{2}$の範囲に方程式$\tan x=x$の解がただ1つ存在することを示せ.
(2)各自然数$n$について,(1)で存在が示された解を$x_n$とする.このとき,極限値$\displaystyle \lim_{n \to \infty}n \left( n\pi+\frac{\pi}{2}-x_n \right)$を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第4問
関数$f(x)$は
\[ f(x)=\cos x+\int_0^{2\pi} f(y) \sin (x-y) \, dy \]
をみたすものとする.次の各問いに答えよ.

(1)$f(x)$は
\[ f(x)=a \sin x+ b \cos x \]
の形に表されることを示せ.ただし,$a$と$b$は定数である.
(2)$f(x)$を求めよ.
東京農工大学 国立 東京農工大学 2011年 第3問
2つの関数
\[ f(x)=\sin 3x+\sin x+\cos x,\quad g(x)=\cos 3x \]
について,次の問いに答えよ.

(1)区間$0 \leqq x \leqq n\pi$における2つの曲線$y=f(x),\ y=g(x)$の交点の個数を$r$とする.$r$を$n$の式で表せ.ただし,$n$は正の整数とする.
(2)区間$0 \leqq x \leqq \pi$において$f(x)<g(x)$をみたす$x$の範囲を求めよ.
(3)定積分
\[ I=\int_0^\pi |f(x)-g(x)| \, dx \]
の値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2011年 第2問
Oを原点とする$xy$平面上を動く点Pの時刻$t$における座標$(x,\ y)$が
\[ x=(1+t^2)\cos t,\quad y=(1+t^2)\sin t \]
で与えられている.時刻$t$におけるPの速度を$\overrightarrow{v}$とし,2つのベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{v}$のなす角を$\theta$とする.ただし,$0 \leqq \theta \leqq \pi$である.

(1)時刻$t$において,ベクトル$\overrightarrow{a}=(\cos t,\ \sin t),\ \overrightarrow{b}=(-\sin t,\ \cos t)$と実数$c,\ d$が$\overrightarrow{v}=c \overrightarrow{a}+d \overrightarrow{b}$を満たすとき,$c,\ d$を$t$を用いて表せ.
(2)$t>0$のとき,$\tan \theta$を$t$を用いて表せ.
(3)$t>0$における$\theta$の最小値を求めよ.
鹿児島大学 国立 鹿児島大学 2011年 第6問
曲線$C$は極方程式$r=2 \cos \theta$で定義されているとする.このとき,次の各問いに答えよ.

(1)曲線$C$を直交座標$(x,\ y)$に関する方程式で表し,さらに図示せよ.
(2)点$(-1,\ 0)$を通る傾き$k$の直線を考える.この直線が曲線$C$と$2$点で交わるような$k$の値の範囲を求めよ.
(3)(2)のもとで,$2$交点の中点の軌跡を求めよ.
小樽商科大学 国立 小樽商科大学 2011年 第3問
次の[ ]の中を適当に補いなさい.

(1)$m>0$とする.放物線$y=x^2$と放物線$y=x(m-x)$とで囲まれた図形の面積$S$を$m$で表せば,$S=[ ]$.
(2)$\cos 2\theta-\cos \theta+1$の最大値を$M$,最小値を$m$とすれば,$(M,\ m)=[ ]$.
(3)10段の階段を1段ずつ,1段飛ばし,2段飛ばしの3種類の登り方を自由に使って登ることができるものとする.このとき,10段を登る方法は全部で[ ]通りある.
旭川医科大学 国立 旭川医科大学 2011年 第4問
$\displaystyle f(x)=\frac{1}{\cos x}-\tan x \left( 0 \leqq x <\frac{\pi}{2} \right)$とする.次の問いに答えよ.

(1)$g(x)$を$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$で連続で,$\displaystyle 0 \leqq x < \frac{\pi}{2}$では$g(x)=f(x)$を満たす関数とする.

\mon[(a)] $\displaystyle g \left( \frac{\pi}{2} \right)$を求めよ.
\mon[(b)] $g(x)$の増加,減少を調べよ.
\mon[(c)] $\displaystyle \int_0^x g(t) \, dt$を求めよ.

(2)$n$を自然数とし,$c_n$を$\displaystyle \int_{\frac{\pi}{2}-c_n}^{\frac{\pi}{2}}g(t) \, dt=\frac{1}{n} \int_0^{\frac{\pi}{2}} g(t) \, dt$を満たす0と$\displaystyle \frac{\pi}{2}$の間の数とする.次の極限を求めよ.

\mon[(a)] $\displaystyle \lim_{n \to \infty}n(1-\cos c_n)$
\mon[(b)] $\displaystyle \lim_{n \to \infty}\sqrt{n}c_n$
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。