タグ「三角比」の検索結果

151ページ目:全1924問中1501問~1510問を表示)
山梨大学 国立 山梨大学 2011年 第1問
次の各問いに答えよ.

(1)$\displaystyle 0 \leqq \alpha \leqq \pi,\ 0 \leqq \theta \leqq \frac{\pi}{2}$のとき,次の方程式を満たす$\alpha$と$\theta$を求めよ.
\[ \left\{
\begin{array}{l}
2 \cos^2 \alpha-2\sqrt{2} \cos \alpha +1=0 \\
\sqrt{3} \sin \theta + \cos \theta = 2 \cos \alpha
\end{array}
\right. \]
(2)$2$次方程式$x^2-(2a+3)x+a+2=0$の$2$つの解が$\log_2 b$と$\log_2 2b$であるとき,$a$と$b$の値を求めよ.
(3)次の連立不等式が表す領域を$D$とする.
\[ \left\{
\begin{array}{l}
y+2 \leqq 2x \leqq 6-y \\
2y \geqq -1
\end{array}
\right. \]
領域$D$と放物線$y=px^2-1$が共有点を持つような定数$p$の範囲を求めよ.
新潟大学 国立 新潟大学 2011年 第4問
関数
\[ f(t)=\left\{
\begin{array}{l}
t \qquad\qquad (0 \leqq t \leqq \pi) \\
2\pi-t \quad \, (\pi<t \leqq 2\pi)
\end{array}
\right. \]
に対して,次のように2つの関数$g(x),\ h(x)$を$0 \leqq x \leqq 2\pi$で定義する.
\[ g(x)=\int_0^{2\pi}f(t) \cos (t+x) \, dt,\quad h(x)=\int_0^{2\pi}f(t) \sin (t+x) \, dt \]
このとき,次の問いに答えよ.

(1)関数$g(x),\ h(x)$を求めよ.
(2)$x$が$0 \leqq x \leqq 2\pi$の範囲を動くとき,関数$y=g(x)+h(x)$の最大値と最小値を求めよ.
茨城大学 国立 茨城大学 2011年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.

(1)次の関数を微分せよ.

\mon[(i)] $y=\sin^3 2x$
\mon[(ii)] $\displaystyle y=\log \frac{e^x}{e^x+1}$

(2)次の不定積分を求めよ.

(3)$\displaystyle \int \frac{1}{x^2} \left( 1+\frac{2}{x} \right)^2 \, dx$
\mon[(ii)] $\displaystyle \int \frac{x^2}{x^2-1} \, dx$

(4)定積分$\displaystyle \int_{-1}^{\log 2} e^{|x|}e^{x} \, dx$を求めよ.
山形大学 国立 山形大学 2011年 第1問
関数$f(x)=x+\cos (2x)$がある.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$の第$2$次導関数$f^{\prime\prime}(x)$を求めよ.
(3)曲線$\displaystyle y=f(x) \ \left( \text{ただし,} \ 0 \leqq x \leqq \frac{\pi}{2} \right)$の増減表を書け.増減表には,増減のほか,凹凸についても明示すること.
(4)曲線$\displaystyle y=f(x) \ \left( \text{ただし,} \ 0 \leqq x \leqq \frac{\pi}{2} \right)$のグラフを描け.
山形大学 国立 山形大学 2011年 第2問
平面上の曲線$C$は媒介変数$t$を用いて,
\[ x=\cos t,\quad y=a \sin t+ b \cos t \quad (0 \leqq t \leqq 2\pi) \]
と表される.$a,\ b$は定数であり,$a>0$を満たす.以下の問に答えよ.

(1)曲線$C$の方程式を$x,\ y,\ a,\ b$を用いて表し,$y$について解け.
(2)曲線$C$が$x$軸,$y$軸と交わる点の座標を求めよ.

定数$a,\ b$がそれぞれ$\displaystyle a=\frac{1}{\sqrt{2}},\ b=\frac{1}{\sqrt{2}}$のとき,以下の問に答えよ.

(3)$x,\ y$のそれぞれの最大値,最小値を求めよ.
(4)曲線$C$によって囲まれた部分の面積を求めよ.
山形大学 国立 山形大学 2011年 第1問
次の問いに答えよ.

(1)$0 \leqq x < 2\pi$のとき,方程式$6 \sin^2 x+5 \cos x-2=0$を満たす$x$の値を求めよ.
(2)座標空間に4点A$(2,\ 0,\ 0)$,B$(0,\ 3,\ 0)$,C$(-1,\ 1,\ 0)$,D$(1,\ 1,\ -9)$がある.四面体ABCDの体積を求めよ.
(3)7で割ると2余り,11で割ると3余るような300以下の自然数をすべて求めよ.
和歌山大学 国立 和歌山大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \sin \theta = \frac{1}{5}$であるとき,$\sin 3\theta$の値を求めよ.
(2)$0 \leqq x \leqq \pi$とする.このとき,
\[ -2 \sin 3x-\cos 2x +3 \sin x+1 \leqq 0 \]
を満たすような$x$の範囲を求めよ.
和歌山大学 国立 和歌山大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \sin \theta = \frac{1}{5}$であるとき,$\sin 3\theta$の値を求めよ.
(2)$0 \leqq x \leqq \pi$とする.このとき,
\[ -2 \sin 3x-\cos 2x +3 \sin x+1 \leqq 0 \]
を満たすような$x$の範囲を求めよ.
山形大学 国立 山形大学 2011年 第3問
座標平面上で原点を中心とする角$\theta \ $(ラジアン)の回転移動を表す行列を$R(\theta)$とする.また,$\displaystyle 0<\theta<\pi \ \left( \theta \neq \frac{\pi}{2} \right)$となる$\theta$に対し,直線$y=(\tan \theta)x$に関する対称移動を表す行列を$A(\theta)$とする.このとき,次の問に答えよ.

(1)行列$X=R(\theta)^{-1}A(\theta)R(\theta)$を求めよ.また,$s$に対して$XR(s)X=R(t)$を満たす$t$を求めよ.ただし,$R(\theta)^{-1}$は$R(\theta)$の逆行列である.
(2)$\displaystyle 0<\alpha<\pi,\ 0<\beta<\pi \ \left( \alpha,\ \beta \neq \frac{\pi}{2} \right)$のとき,$A(\alpha) A(\beta)$を求めよ.
(3)$\displaystyle 0<\beta<\frac{\pi}{2}<\alpha<\pi$のとき,$A(\alpha)A(\beta)=A(\beta)A(\alpha)$となるための必要十分条件を$\alpha,\ \beta$を用いて表せ.
(4)$\displaystyle 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2}$で,点$(\tan \alpha,\ \tan \beta)$が曲線$\displaystyle y=\frac{3x-1}{x+3}$上にあるとき,次の\maru{1},\maru{2}に答えよ.

\mon[\maru{1}] $\tan (\alpha-\beta)$の値を求めよ.
\mon[\maru{2}] $A(\alpha)A(\beta)$を求めよ.
奈良教育大学 国立 奈良教育大学 2011年 第2問
自然数$n$に対して$\displaystyle I_n=\int_0^{\frac{\pi}{2}} \cos^n x \, dx$と置く.このとき,以下の設問に答えよ.

(1)$\displaystyle I_n=\int_0^{\frac{\pi}{2}} (\cos^{n-1} x)(\sin x)^\prime \, dx$と書きなおし,部分積分を適用して$I_n$と$I_{n-2}$の関係式を求めよ.但し$n \geqq 3$とする.
(2)$I_5$を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。