タグ「三角比」の検索結果

150ページ目:全1924問中1491問~1500問を表示)
琉球大学 国立 琉球大学 2011年 第4問
次の問いに答えよ.

(1)定積分$\displaystyle \int_{-\pi}^\pi x \sin 2x \, dx$を求めよ.
(2)$m,\ n$が自然数のとき,定積分$\displaystyle \int_{-\pi}^\pi \sin mx \sin nx \, dx$を求めよ.
(3)$a,\ b$を実数とする.$a,\ b$の値を変化させたときの定積分$\displaystyle I=\int_{-\pi}^\pi (x-a \sin x-b \sin 2x)^2 \, dx$の最小値,およびそのときの$a,\ b$の値を求めよ.
岐阜大学 国立 岐阜大学 2011年 第4問
空間内の四面体OABCについて,$\angle \text{OAC}=\angle \text{OAB}=90^\circ,\ \angle \text{BOC}=\alpha,\ \angle \text{COA}=\beta,\ \angle \text{AOB}=\gamma,\ \text{OA}=1$とする.ただし,$\alpha,\ \beta,\ \gamma$はすべて鋭角で,$\displaystyle \cos \alpha=\frac{1}{4},\ \cos \beta=\frac{1}{\sqrt{3}},\ \cos \gamma=\frac{1}{\sqrt{3}}$である.三角形ABCの外接円を$S$とし,その中心をPとする.以下の問に答えよ.

(1)辺BCの長さを求めよ.
(2)$\theta=\angle \text{BAC}$とするとき,$\cos \theta$の値を求めよ.
(3)線分OPの長さを求めよ.
(4)円$S$の周上に点Dをとり,線分ADと線分DBの長さをそれぞれ$\text{AD}=x,\ \text{DB}=y$とする.$x+y$の最大値とそれを与える$x,\ y$を求めよ.
電気通信大学 国立 電気通信大学 2011年 第2問
$x>0$において関数
\[ f(x)=\sin (\log x) \]
を考える.\\
方程式$f(x)=0$の$0<x \leqq 1$における解を大きいほうから順にならべて,
\[ 1=\alpha_1>\alpha_2>\alpha_3>\cdots > \alpha_n>\alpha_{n+1} > \cdots \]
とする.以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数とする.なお,不定積分の計算においては積分定数を省略してもよい.

(1)不定積分$I(x),\ J(x)$をそれぞれ
\[ I(x)=\int e^x \sin x \, dx,\quad J(x)=\int e^x \cos x \, dx \]
とおくとき,$I(x)+J(x),\ I(x)-J(x)$を求めよ.
(2)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(3)$\alpha_n \ (n=1,\ 2,\ 3,\ \cdots)$を求めよ.
(4)区間$\alpha_{n+1} \leqq x \leqq \alpha_n$において,曲線$y=f(x)$と$x$軸とで囲まれる部分の面積を$S_n \ (n=1,\ 2,\ 3,\ \cdots)$とする.$S_n$を求めよ.
(5)無限級数$\displaystyle \sum_{n=1}^\infty S_n$の和$S$を求めよ.
福島大学 国立 福島大学 2011年 第1問
以下の問いに答えなさい.

(1)次の不等式を解きなさい.
\[ -2(\log_2x)^2+9\log_82x<1 \]
(2)放物線$y=-x^2$に,点$\mathrm{A}(0,\ a)$から引いた$2$本の接線のなす角が$\displaystyle \frac{\pi}{2}$になるときの$a$の値を求めなさい.
(3)$\displaystyle \int_0^\pi x^2 \sin 2x \, dx$を求めなさい.
福島大学 国立 福島大学 2011年 第2問
以下の問いに答えなさい.

(1)点Oを頂点とし,1辺の長さ1の正方形ABCDを底面とする四角錐O-ABCDが,$\text{OA}=\text{OB}=\text{OC}=\text{OD}=1$を満たしているとする.辺OAを$2:1$に内分する点をP,辺OCを$t:1-t$に内分する点をQとする.線分BPと線分BQのなす角が$\displaystyle \frac{\pi}{3}$になるときの$t$の値を求めなさい.
(2)点Pが放物線$y=x^2$上を動くき,定点A$(1,\ a)$と点Pとを結ぶ線分APを$1:2$に内分する点Qの軌跡の方程式を$a$を用いて書きなさい.
(3)$\displaystyle \frac{d}{dx} \int_0^{\sin 3x} e^{2t} \, dt$を求めなさい.
群馬大学 国立 群馬大学 2011年 第2問
平面上で原点Oを通り$x$軸の正の向きと$\theta$の角をなす直線を$\ell$とする.$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かすとき,点A$(2,\ 0)$から$\ell$へ下ろした垂線をAG,点B$(0,\ 1)$から$\ell$へ下ろした垂線をBHとし,折れ線の長さ$\text{AG}+\text{GH}+\text{HB}$を$L$とする.ただし,$\theta = 0$のときはGはAに等しく,$\displaystyle \theta=\frac{\pi}{2}$のときはHはBに等しいものとする.直線$\ell$の傾きは0以上とする.

(1)$\text{GH} = 0$となるときの$\theta$の値を$\alpha$とするとき,$\tan \alpha$の値を求めよ.
(2)$L$の最小値と,そのときの$\tan \theta$の値を求めよ.
(3)$L$の最大値と,そのときの$\tan \theta$の値を求めよ.
群馬大学 国立 群馬大学 2011年 第1問
関数$f(x)=3\sin x-\sin 3x \ (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)$f(x)$のグラフは直線$\displaystyle x=\frac{\pi}{2}$に関して対称になることを示せ.
(2)$0<x<\pi$のとき,$f(x)$の極値を求めよ.
(3)曲線$y=f(x) \ (0 \leqq x \leqq \pi)$と$x$軸で囲まれた部分を,$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
群馬大学 国立 群馬大学 2011年 第2問
平面上で原点Oを通り$x$軸の正の向きと$\theta$の角をなす直線を$\ell$とする.$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で動かすとき,点A$(2,\ 0)$から$\ell$へ下ろした垂線をAG,点B$(0,\ 1)$から$\ell$へ下ろした垂線をBHとし,折れ線の長さ$\text{AG}+\text{GH}+\text{HB}$を$L$とする.ただし,$\theta = 0$のときはGはAに等しく,$\displaystyle \theta=\frac{\pi}{2}$のときはHはBに等しいものとする.直線$\ell$の傾きは0以上とする.

(1)$\text{GH} = 0$となるときの$\theta$の値を$\alpha$とするとき,$\tan \alpha$の値を求めよ.
(2)$L$の最小値と,そのときの$\tan \theta$の値を求めよ.
(3)$L$の最大値と,そのときの$\tan \theta$の値を求めよ.
群馬大学 国立 群馬大学 2011年 第3問
直線$\displaystyle \ell:y=\frac{1}{2}x-\frac{1}{4}$上の点Pから曲線$y=x^2$にひいた2接線の接点をQ,Rとし,$\theta=\angle \text{QPR}$とするとき,次の問いに答えよ.

(1)Pの$x$座標を$t$としPを$\ell$上動かす.$t \neq 0$のとき,$\tan \theta$を$t$の関数として表せ.
(2)$\theta$の最大値を求め,このときの点Pの座標を求めよ.
宇都宮大学 国立 宇都宮大学 2011年 第6問
曲線$C_1$は媒介変数$t$を用いて
\[ x=t-\sin t,\quad y=1-\cos t \quad (0 \leqq t \leqq 2\pi) \]
と表されるとする.また,曲線$C_2$は
\[ x=t-\sin t,\quad y=1+\cos t \quad (0 \leqq t \leqq 2\pi) \]
と表されるとする.このとき,次の問いに答えよ.

(1)$C_1$と$C_2$は直線$y=1$に関して対称であることを示せ.
(2)$C_1$と$C_2$の交点の座標を求めよ.
(3)$C_1$と$C_2$で囲まれた部分を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。