タグ「三角比」の検索結果

148ページ目:全1924問中1471問~1480問を表示)
富山大学 国立 富山大学 2011年 第1問
次の問いに答えよ.

(1)定積分$\displaystyle I=\int_0^\pi e^x \cos x \, dx$と$\displaystyle J=\int_0^\pi e^x \sin x \, dx$の値を求めよ.
(2)実数$a,\ b$が
\[ \int_0^\pi (a\cos x +b \sin x)^2 \, dx = 1 \]
をみたしながら動くとき
\[ \int_0^\pi (e^x-a\cos x-b \sin x)^2 \, dx \]
の最大値を求めよ.
富山大学 国立 富山大学 2011年 第3問
平面内の2つの単位ベクトル$\overrightarrow{a}$と$\overrightarrow{b}$に対して
\[ \overrightarrow{v} = \frac{1}{2 \sin \frac{\theta}{2}} (\overrightarrow{b}-\overrightarrow{a}) \]
とおく.ただし,$\theta$は$\overrightarrow{a}$と$\overrightarrow{b}$のなす角であり,$0<\theta<\pi$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{v}$と$\overrightarrow{b} \cdot \overrightarrow{v}$を$\theta$を用いて表せ.
(2)$\overrightarrow{x}$を,$\overrightarrow{a}$に垂直で,$\overrightarrow{x} \cdot \overrightarrow{b}>0$をみたす単位ベクトルとする.このとき$\overrightarrow{x}$を$\overrightarrow{a}$と$\overrightarrow{v}$を用いて表せ.
(3)$\displaystyle \theta=\frac{\pi}{6}$のとき,$\overrightarrow{a} \cdot \overrightarrow{v}$の値を求めよ.
福井大学 国立 福井大学 2011年 第2問
座標平面上の原点Oを中心とする半径1の円周上に,点Pがある.ただし,Pは第1象限の点である.点Pから$x$軸に下ろした垂線と$x$軸との交点をQ,線分PQを$2:1$に内分する点をRとする.$\theta=\angle \text{QOP}$のときの$\tan \angle \text{QOR}$と$\tan \angle \text{ROP}$の値をそれぞれ$f(\theta),\ g(\theta)$とおく.以下の問いに答えよ.

(1)$f(\theta)$と$g(\theta)$を$\theta$を用いて表せ.
(2)$g(\theta)$の$\displaystyle 0<\theta<\frac{\pi}{2}$における最大値と,そのときの$\theta$の値を求めよ.
徳島大学 国立 徳島大学 2011年 第1問
次の問いに答えよ.

(1)次の連立不等式を満たす$x$の値の範囲を求めよ.
\[ \left(\frac{1}{27} \right)^x<3^{5x-2},\quad \log_9 \frac{3}{x}>1 \]
(2)$0 \leqq x \leqq \pi$のとき,次の不等式を満たす$x$の値の範囲を求めよ.
\[ \sqrt{3} \sin x -\cos x < \sqrt{3} \]
富山大学 国立 富山大学 2011年 第3問
$\displaystyle \cos \theta = \sqrt{\frac{3}{5}}$のとき
\[ a=\frac{2\sqrt{5}(\sin \theta+\cos \theta)-5\sin 2\theta}{2} \]
とおく.ただし,$0^\circ < \theta < 90^\circ$とする.次の問いに答えよ.

(1)$a$の値を求めよ.
(2)(1)で求めた$a$に対して,$\displaystyle \frac{1}{a}$の分母を有理化せよ.
島根大学 国立 島根大学 2011年 第3問
次の問いに答えよ.

(1)関数$y=|x|\sin x$の$x=0$における微分可能性を調べよ.
(2)不定積分$\displaystyle \int x\sin 2x \, dx$を求めよ.
(3)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲で,曲線$C:y=|x|\sin x$を考える.$C$と直線$y=x$で囲まれる図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
島根大学 国立 島根大学 2011年 第3問
次の問いに答えよ.

(1)関数$y=|x|\sin x$の$x=0$における微分可能性を調べよ.
(2)不定積分$\displaystyle \int x\sin 2x \, dx$を求めよ.
(3)$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$の範囲で,曲線$C:y=|x|\sin x$を考える.$C$と直線$y=x$で囲まれる図形を$x$軸のまわりに回転してできる立体の体積を求めよ.
佐賀大学 国立 佐賀大学 2011年 第1問
次の問いに答えよ.

(1)定数$a,\ b$を用いて,$\sin \theta+\cos \theta$を$a\sin (\theta+b)$の形に表せ.ただし,$a>0, 0 \leqq b < 2\pi$とする.
(2)$0 \leqq \theta \leqq \pi$の範囲で,$\sin \theta + \cos \theta$の最大値と最小値を求めよ.
(3)$t=\sin \theta + \cos \theta$とおくとき,$\sin \theta \cdot \cos \theta$を$t$を用いて表し,$0 \leqq \theta \leqq \pi$の範囲で,$\sin \theta \cdot \cos \theta$の最大値と最小値を求めよ.
(4)$t=\sin \theta + \cos \theta$とおくとき,$\sin^3 \theta + \cos^3 \theta$を$t$を用いて表し,$0 \leqq \theta \leqq \pi$の範囲で,$\sin^3 \theta + \cos^3 \theta$の最大値と最小値を求めよ.
山口大学 国立 山口大学 2011年 第2問
$a$を実数とし,
\[ I=\int_0^\pi (x+a\cos x+a^2 \sin x)^2 \, dx \]
とおく.このとき,次の問いに答えなさい.

(1)$I$を$a$の式で表しなさい.
(2)$\displaystyle I>\frac{\pi}{2}a^4$であることを示しなさい.
徳島大学 国立 徳島大学 2011年 第4問
$\displaystyle X=\frac{1}{4} \biggl( \begin{array}{cc}
\sqrt{6} & 2\sqrt{2} \\
5\sqrt{2} & 2\sqrt{6}
\end{array} \biggr),\ Y=\biggl( \begin{array}{cc}
-1 & \sqrt{3} \\
\sqrt{3} & -2
\end{array} \biggr)$のとき$A=XY$とする.行列$A^n \ (n=1,\ 2,\ 3,\ \cdots)$の表す移動によって,点$(-10^8,\ \sqrt{3}\times 10^8)$が点P$_n$に移るとする.$\log_{10}2=0.3010$として,次の問いに答えよ.

(1)$A=k \biggl( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \biggr)$を満たす$k$と$\theta$を求めよ.ただし,$k>0$とし,$\theta$は$0 \leqq \theta < 2\pi$とする.
(2)点P$_n$が中心$(0,\ 0)$,半径1の円の内部にある$n$のうちで,最小の$n$の値を求めよ.
(3)不等式$2^8 < \sqrt{x^2+y^2} < 2^{15},\ y>|\,x\,|$の表す領域を$D$とする.点P$_n$が$D$内にある$n$の値をすべて求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。