タグ「三角比」の検索結果

141ページ目:全1924問中1401問~1410問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
以下の問の$[$50$]$~$[$63$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

関数$\displaystyle y=-4a \sin^2 \frac{\theta}{2}-3 \sin 2\theta-4 \cos 2\theta-6a \sin \theta+2a+10$がある.

(1)$3 \sin \theta-\cos \theta=t$とおくと,$y=t^2-[$50$]at+[$51$]$である.
(2)$a$の値の範囲が$-5<a<5$のとき,この関数の最大値$y_{\max}$のとりうる値の範囲は
\[ [$52$][$53$] \leqq y_{\max}<[$54$][$55$]+[$56$][$57$] \sqrt{[$58$][$59$]} \]
である.
(3)この関数の最小値が$-15$であるとき$\displaystyle a=\pm \frac{[$60$] \sqrt{[$61$][$62$]}}{[$63$]}$である.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$(19 \times 25) \times (21 \times 16)$を計算せよ.
(2)$a^2-b^2-1+2b$を因数分解せよ.
(3)式$(\sin {20}^\circ+\cos {20}^\circ)^2+(\sin {110}^\circ+\cos {110}^\circ)^2$の値を求めよ.
(4)縮尺$\displaystyle \frac{1}{2000}$の地図で,縦$5 \, \mathrm{cm}$,横$0.6 \, \mathrm{cm}$の長方形の土地の実際の面積は何$\mathrm{m}^2$かを求めよ.
安田女子大学 私立 安田女子大学 2012年 第2問
$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$の長さを$x$,辺$\mathrm{BC}$の長さを$3$,辺$\mathrm{CA}$の長さを$4$とする.また,$\angle \mathrm{BCA}$を$\theta$とする.このとき,次の問いに答えよ.

(1)$x$を$\theta$を用いて表せ.
(2)$0^\circ<\theta<{180}^\circ$であることを用いて,$x$のとり得る値の範囲を求めよ.
(3)$\triangle \mathrm{ABC}$に外接する円の直径が$5$であるとき,$\cos \theta$の値を求めよ.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{5}$の小数部分を$a$とするとき,$\displaystyle a+\frac{1}{a}$の値を求めよ.
(2)$4<\sqrt{2x^2}<7$を満たす整数$x$をすべて求めよ.
(3)正三角形$\mathrm{ABC}$において$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta+\cos \theta+\tan \theta$の値を求めよ.
(4)対角線の差が$4 \, \mathrm{cm}$で,面積が$96 \, \mathrm{cm}^2$のひし形がある.このひし形の$1$辺の長さを求めよ.
(5)$5^{4 \log_5 2}$の値を求めよ.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\sqrt{5}$の小数部分を$a$とするとき,$\displaystyle a+\frac{1}{a}$の値を求めよ.
(2)$4<\sqrt{2x^2}<7$を満たす整数$x$をすべて求めよ.
(3)正三角形$\mathrm{ABC}$において$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta+\cos \theta+\tan \theta$の値を求めよ.
(4)対角線の差が$4 \, \mathrm{cm}$で,面積が$96 \, \mathrm{cm}^2$のひし形がある.このひし形の$1$辺の長さを求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の問の$[$64$]$~$[$73$]$に当てはまる適切な数値またはマイナス符号($-$)をマークしなさい.

$xy$平面上に原点$\mathrm{O}(0,\ 0)$を中心とする円$C$と,$2$つの直線$\ell_1$,$\ell_2$がある.ただし,$a>1$とする.


円$C$ \quad\!\! :$x^2+y^2=1$
直線$\ell_1$:$\displaystyle x+\sqrt{2}y=\frac{\sqrt{3}}{a}$
直線$\ell_2$:$\displaystyle x+\sqrt{2}y=a \sqrt{3}$


円$C$と直線$\ell_1$は異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,それぞれの$x$座標を$x_\mathrm{A}$,$x_\mathrm{B}$とおくと,$x_\mathrm{A}<x_\mathrm{B}$である.また,直線$\ell_2$上に,$x$座標および$y$座標が共に正であるような点$\mathrm{P}$をとる.三角形$\mathrm{APB}$において,$\angle \mathrm{APB}=\theta$とすると,$\displaystyle \cos \theta=\frac{1}{a} \sqrt{a^2-1}$であり,四角形$\mathrm{OAPB}$の面積は$2 \sqrt{6}$である.

(1)線分$\mathrm{AB}$の長さは$\displaystyle \frac{[$64$] \sqrt{[$65$]}}{[$66$]}$である.

(2)$\angle \mathrm{OBP}=\frac{[$67$]}{[$68$]} \pi+\frac{[$69$]}{[$70$]} \theta$である.

(3)三角形$\mathrm{OBP}$の面積は$\displaystyle \frac{[$71$] \sqrt{[$72$]}}{[$73$]}$である.
安田女子大学 私立 安田女子大学 2012年 第2問
$x$の方程式について次の問いに答えよ.

(1)$x$の方程式$\displaystyle \frac{1}{2}x^2+bx+1=0$が解を$1$個だけ持つ条件を求めよ.
(2)$x$の方程式$\sin x=a (0 \leqq x<2\pi)$が解を$1$個だけ持つ条件を求めよ.
(3)$x$の方程式$\displaystyle \frac{1}{2} \sin^2 x+b \sin x+1=0 (0 \leqq x<2\pi)$が解を$1$個だけ持つ条件を求めよ.
安田女子大学 私立 安田女子大学 2012年 第4問
座標平面上の直線$y=2x+1$を直線$\ell$とし,直線$\ell$と$y$軸の交点を$\mathrm{A}$とする.第$1$象限内における直線$\ell$上の任意の点を中心とし$\mathrm{A}$を通る円$\mathrm{O}$を考える.直線$\ell$と円$\mathrm{O}$の交点のうち,$\mathrm{A}$と異なるもう一方の交点を$\mathrm{B}$とする.また,$\mathrm{A}$を通り$x$軸に平行な直線と円$\mathrm{O}$の交点のうち,$\mathrm{A}$と異なる交点を$\mathrm{C}$とする.このとき,次の問いに答えよ.

(1)$\sin \angle \mathrm{BAC}$の値を求めよ.
(2)直線$\mathrm{BC}$は$y$軸に平行であることを証明せよ.
(3)円$\mathrm{O}$が$x$軸と接するとき,接点の$x$座標を求めよ.
安田女子大学 私立 安田女子大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{6}}$を計算せよ.

(2)$x^3-x^2-4x+4$を因数分解せよ.
(3)$0^\circ<\theta<{60}^\circ$のとき,$\cos ({180}^\circ-\theta)$の値の範囲を求めよ.
(4)$\mathrm{BC}=3$,$\angle B={135}^\circ$である$\mathrm{ABC}$において,外接円の半径が$3$のとき,$\angle A$の大きさを求めよ.
安田女子大学 私立 安田女子大学 2012年 第3問
直角三角形$\mathrm{ABC}$において,$\mathrm{AB}=\sqrt{3}$,$\mathrm{BC}=1$,$\mathrm{CA}=2$である.図のように,$\triangle \mathrm{ABC}$の外接円上の点$\mathrm{B}$における接線上に$\mathrm{BD}=2 \sqrt{3}$となるように点$\mathrm{D}$をとる.このとき,次の問いに答えよ.
(図は省略)

(1)$\cos \angle \mathrm{CBD}$を求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)線分$\mathrm{CD}$の$\mathrm{C}$を越える延長と$\triangle \mathrm{ABC}$の外接円との交点のうち,点$\mathrm{C}$と異なる点を$\mathrm{E}$とするとき,$\triangle \mathrm{BDE}$の面積を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。