タグ「三角比」の検索結果

138ページ目:全1924問中1371問~1380問を表示)
法政大学 私立 法政大学 2012年 第3問
三角形$\mathrm{ABC}$において,$\mathrm{CA}=\mathrm{CB}=3$,$\mathrm{AB}=4$である.また,$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とおく.

(1)$\cos \angle \mathrm{BCA}=\frac{[ア]}{[イ]}$である.また,三角形$\mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オカ]}$である.
(2)$\overrightarrow{a} \cdot \overrightarrow{b}=[キ]$である.
(3)点$\mathrm{C}$を通り直線$\mathrm{AB}$に直交する直線$\ell$と$\mathrm{AB}$の交点を$\mathrm{M}$とすると,
$\displaystyle \overrightarrow{\mathrm{CM}}=\frac{[ク]}{[ケ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.また,点$\mathrm{B}$を通り直線$\mathrm{CA}$に直交する直線と$\ell$の交点を$\mathrm{H}$とすると,$\displaystyle \overrightarrow{\mathrm{CH}}=\frac{[コ]}{[サシ]} \left( \overrightarrow{a}+\overrightarrow{b} \right)$である.
次に,三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とすると,$\displaystyle \mathrm{OH}=\frac{[ス] \sqrt{[セ]}}{[ソタ]}$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第2問
糸の長さ$L$,おもりの質量$m$の振り子の振れの角(水平面に垂直な直線と糸がなす角)の大きさを$\theta$とすると,$\theta$は時刻$t$の関数として
\[ mL \frac{d^2 \theta}{dt^2}=-mg \theta \cdots\cdots (*) \]
を満たす.ただし重力加速度$g$は一定とする.

(1)$\theta=a \cos (2 \pi \nu t+\delta)$(ただし$\nu,\ a,\ \delta$は定数で$\nu>0$,$a \neq 0$)が時刻$t=t_1$で極大値をとり,その後初めて極小値をとる時刻を$t=t_2$とするとき,$t_2-t_1=[$4$]$である.
(2)$(1)$の$\theta$が$(*)$を満たすとき,$\nu$を求めると$\nu=[$5$]$である.
(3)$(2)$の$\theta$に対して時刻$t$におけるこの振り子のエネルギー$E(t)$を
\[ E(t)=\frac{1}{2} mL^2 \left( \frac{d\theta}{dt} \right)^2+\frac{1}{2}mgL \theta^2 \]
で与えるものとする.このとき$\displaystyle \frac{dE(t)}{dt}=[$6$]$である.
関西学院大学 私立 関西学院大学 2012年 第4問
$a$を定数とし,$\displaystyle f(x)=\frac{\cos 2x-(a+2) \cos x+a+1}{\sin x}$とするとき,次の問いに答えよ.

(1)極限$\displaystyle \lim_{x \to 0} \frac{\cos x-1}{x^2}$を求めよ.

(2)等式$\displaystyle \lim_{x \to 0} \frac{f(x)}{x}=\frac{1}{2}$が成り立つように定数$a$の値を求めよ.

(3)上の$(2)$で求めた$a$の値に対して定積分$\displaystyle \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{f(x)} \, dx$を求めよ.
産業医科大学 私立 産業医科大学 2012年 第3問
自然数$n$と$0$以上の整数$m$に対して,$\displaystyle p_n=\comb{2n}{n} {\left( \frac{1}{2} \right)}^{2n}$,$\displaystyle I_m=\int_0^{\frac{\pi}{2}} \sin^m x \, dx$とおく.次の問いに答えなさい.

(1)すべての自然数$n$について$\displaystyle \left( n+\frac{1}{2} \right) {p_n}^2=\frac{bI_{2n}}{I_{2n+1}}$が成り立つように,定数$b$の値を求めなさい.
(2)$\displaystyle 0<x<\frac{\pi}{2}$のとき,$\sin^m x>\sin^{m+1} x>0$であることを用いて,極限$\displaystyle \lim_{n \to \infty} \sqrt{n} p_n$を求めなさい.
法政大学 私立 法政大学 2012年 第5問
次の問題は,生命科学部生命機能学科植物医科学専修を志望する受験生のみ解答せよ.

$\mathrm{O}$を原点とする座標平面上に点$\mathrm{P}(x,\ y)$がある.

(1)$\theta$は$0<\theta<2\pi$を満たし,行列$A$を
\[ A=\left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right) \]
とする.行列$A$が表す移動により,$\mathrm{P}$が点$\mathrm{Q}_1$に移るとするとき,$\mathrm{Q}_1$は$\mathrm{O}$を中心に$\mathrm{P}$を角$[ア]$だけ回転した点である.
ただし,$[ア]$については,以下の$\nagamaruichi$~$\nagamaruroku$から$1$つを選べ.
\[ \nagamaruichi -\theta \qquad \nagamaruni 0 \qquad \nagamarusan \theta \qquad \nagamarushi 2\theta \qquad \nagamarugo 3\theta \qquad \nagamaruroku \theta^2 \]
行列$B$を$\displaystyle B=\frac{1}{3}A$で定める.行列$B$が表す移動により$\mathrm{P}$が点$\mathrm{Q}_2$に移るとするとき,$\displaystyle \mathrm{OQ}_2=\frac{[イ]}{[ウ]} \mathrm{OP}$である.
$\mathrm{P}$が$x$軸方向に$-2$だけ平行移動し,$y$軸方向に$4$だけ平行移動した点を$\mathrm{Q}_3(X,\ Y)$とするとき,
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
[エオ] \\
[カ]
\end{array} \right) \]
が成り立つ.
(2)$\mathrm{P}(x,\ y)$を点$\mathrm{R}(X,\ Y)$に移す移動$T$が
\[ \left( \begin{array}{c}
X \\
Y
\end{array} \right)=\left( \begin{array}{lr}
3 & -\sqrt{3} \\
\sqrt{3} & 3
\end{array} \right) \left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
14 \\
7
\end{array} \right) \]
で表されている.
移動$T$により,点$\mathrm{B}(p,\ q)$が点$\mathrm{B}(p,\ q)$に移るとするとき,
\[ \left( \begin{array}{c}
p \\
q
\end{array} \right)=\left( \begin{array}{c}
[キク]-\sqrt{[ケ]} \\
[コ] \sqrt{[サ]}-[シ]
\end{array} \right) \]
である.
また,この移動$T$により$\mathrm{P}$が移る点$\mathrm{R}$は,$\theta,\ k$を実数として,点$\mathrm{B}$を中心に$\mathrm{P}$を角$\theta$だけ回転した点を$\mathrm{P}^\prime (x^\prime,\ y^\prime)$とおくと,$\overrightarrow{\mathrm{BR}}=k \overrightarrow{\mathrm{BP}^\prime}$を満たす.つまり,$(1)$の行列$A$を用いると,
\[ \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right)=A \left( \begin{array}{c}
x-p \\
y-q
\end{array} \right),\quad \left( \begin{array}{c}
X-p \\
Y-q
\end{array} \right)=k \left( \begin{array}{c}
x^\prime-p \\
y^\prime-q
\end{array} \right) \]
が成り立つから,$\displaystyle \theta=\frac{\pi}{[ス]}$,$k=[セ]$である.
ただし,$[セ]$については,以下の$\nagamaruichi$~$\nagamarukyu$から$1$つを選べ.
$\nagamaruichi$ $1$ \qquad $\nagamaruni$ $\sqrt{2}$ \qquad $\nagamarusan$ $\sqrt{3}$ \qquad $\nagamarushi$ $2 \sqrt{2}$ \qquad $\nagamarugo$ $3$
$\nagamaruroku$ $2 \sqrt{3}$ \qquad $\nagamarushichi$ $3 \sqrt{2}$ \qquad $\nagamaruhachi$ $3 \sqrt{3}$ \qquad $\nagamarukyu$ $6$
神戸薬科大学 私立 神戸薬科大学 2012年 第4問
以下の文中の$[ ]$の中にいれるべき数または式等を求めて記入せよ.

(1)関数$\displaystyle f(x)=\cos^4 x-\sin^4 x+\frac{1}{2} \sin x \sin 2x+3 \cos x (0 \leqq x \leqq \pi)$とする.$t=\cos x$とおき$f(x)$を$t$の式で表すと,$f(x)=[ ]$である.$f(x)$は$\cos x=[ ]$のとき最大値$[ ]$をとり,$\cos x=[ ]$のとき最小値$[ ]$をとる.
(2)半円$C_1:x^2+y^2=2 (y \geqq 0)$と放物線$C_2:y=ax^2+1-a (a<-1)$とで囲まれた図形の面積$S$を求めたい.

(i) $C_1$と$C_2$の交点を求めると$[ ]$である.
(ii) $C_1$と$C_2$のグラフおよび$(1)$で求めた交点を図示せよ.
(iii) 面積$S=[ ]$である.
産業医科大学 私立 産業医科大学 2012年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$に対して,$x$以下の最大の整数を$[x]$で表す.例えば$[3]=3$,$[3.14]=3$,$[-3.14]=-4$である.実数$x$について,方程式$4x-3[x]=0$の解の個数は$[ ]$であり,方程式$x^2-3x+[3x]=0$の解の個数は$[ ]$である.
(2)$a,\ b,\ c$を$a+b+c=\pi$を満たす正の実数とするとき,$\sin (a) \sin (b) \sin (c)$の最大値は$[ ]$である.
(3)原点を$\mathrm{O}$とする座標空間内の$3$点$\mathrm{A}(-1,\ 1,\ 1)$,$\mathrm{B}(1,\ -1,\ 1)$,$\mathrm{C}(1,\ 1,\ -1)$について$\triangle \mathrm{ABC}$は正三角形である.$\triangle \mathrm{ABC}$を$1$つの面にもつ正四面体の他の頂点$\mathrm{D}$の座標は$[ ]$または$[ ]$である.
(4)定積分$\displaystyle \int_3^4 \frac{6x+5}{x^3-3x-2} \, dx$の値は$[ ]$である.
(5)$123$から$789$までの$3$桁の数から,$1$つを無作為に選び出すとき,同じ数字が$2$つ以上含まれている確率は$[ ]$である.
(6)数直線上の点$\mathrm{P}$は,原点$\mathrm{O}$を出発して,次のルールに従って移動するとする.
「$1$つのさいころを振り,$3$以下の目が出たときは右に$1$,$5$以上の目が出たときは左に$1$,それぞれ動く.また,$4$の目が出たときは動かない.点$\mathrm{P}$の座標が$-1$になったら,さいころを振るのを止め点$\mathrm{P}$はそこにとどまる.それ以外のときは,さいころをまた振る.」
さいころを多くとも$3$回振り移動も終えた後の,点$\mathrm{P}$の座標の期待値は$[ ]$である.
千葉工業大学 私立 千葉工業大学 2012年 第4問
三角形$\mathrm{ABC}$は$\mathrm{AB}=2$,$\mathrm{AC}=7$であり,辺$\mathrm{BC}$を$2:3$に内分する点を$\mathrm{M}$とすると$\angle \mathrm{BAM}={60}^\circ$である.$\mathrm{AM}=x$とするとき,次の問いに答えよ.

(1)三角形$\mathrm{ABM}$の面積を$x$を用いて表すと$\displaystyle \frac{\sqrt{[ア]}}{[イ]}x$である.また,$\mathrm{BM}:\mathrm{MC}=2:3$より,三角形$\mathrm{AMC}$の面積は$\displaystyle \frac{[ウ] \sqrt{[エ]}}{[オ]}x$である.
(2)$\displaystyle \sin \angle \mathrm{MAC}=\frac{[カ] \sqrt{[キ]}}{[クケ]}$であり,$\angle \mathrm{MAC}<{120}^\circ$であることから,$\cos \angle \mathrm{MAC}=\displaystyle\frac{[コサ]}{[シス]}$である.
(3)$\displaystyle \sin \angle \mathrm{BAC}=\frac{[セ] \sqrt{[ソ]}}{[タ]}$である.
(4)三角形$\mathrm{ABC}$の面積は$[チ] \sqrt{[ツ]}$であり,$\displaystyle x=\frac{[テト]}{[ナ]}$である.
大阪工業大学 私立 大阪工業大学 2012年 第1問
次の空所を埋めよ.

(1)$\log_{10}a=\log_{100}a^r$,$\log_{10}3+2 \log_{100}4-\log_{10}6=\log_{100}M$と表すとき,$r=[ア]$であり,$M=[イ]$である.
(2)$a$を正の実数とするとき,$x=i(a+i)^3$が実数となる$a$の値は$[ウ]$であり,このとき$x$の値は$[エ]$である.ただし,$i^2=-1$とする.
(3)初項から第$3$項までの和が$21$,初項から第$6$項までの和が$189$である等比数列の初項は$[オ]$であり,公比は$[カ]$である.
(4)点$\mathrm{A}(-1,\ 0)$を通る直線$\ell$が,中心$(1,\ 0)$,半径$1$の円と$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,$\mathrm{AP} \cdot \mathrm{AQ}=[キ]$である.さらに,$\mathrm{PQ}=1$のとき,直線$\ell$と$x$軸のなす角を$\theta$とすると,$\cos \theta=[ク]$である.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.
大阪薬科大学 私立 大阪薬科大学 2012年 第3問
次の問いに答えなさい.

原点を$\mathrm{O}$とする$xy$座標平面に,点$\mathrm{A}(3,\ 4)$がある.$\mathrm{O}$を中心に反時計回りに$\displaystyle \frac{1}{4}\pi$だけ回転することで,$\mathrm{A}$は点$\mathrm{B}$に移る.

(1)$\overrightarrow{\mathrm{OA}}$と$x$軸の正の向きがなす角を$\alpha$とすると,$\tan \alpha=[$\mathrm{J]$}$である.
(2)$\overrightarrow{\mathrm{OB}}$の成分は$[$\mathrm{K]$}$である.
(3)$\overrightarrow{\mathrm{OC}}=-2 \sqrt{2} \, \overrightarrow{\mathrm{OB}}$となる点$\mathrm{C}$を定め,$\mathrm{OA}$と$\mathrm{OC}$を$2$辺とする平行四辺形$\mathrm{OAPC}$を考える.また,$\mathrm{O}$と$\mathrm{P}$を通る直線を$\ell$とする.

(i) $\ell$の方程式は,$y=[$\mathrm{L]$}$である.
(ii) $3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{C}$を通る放物線と$\ell$で囲まれる部分の面積は,$[$\mathrm{M]$}$である.
(iii) $\mathrm{AP}$を$(1-t):t$に内分する点を$\mathrm{D}$,$\mathrm{CD}$と$\ell$の交点を$\mathrm{E}$とするとき,$\mathrm{DE}:\mathrm{EC}$を$[う]$で求めなさい.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。