タグ「三角比」の検索結果

135ページ目:全1924問中1341問~1350問を表示)
神奈川大学 私立 神奈川大学 2012年 第3問
定数$a,\ b$は$a>b>0$とし,$0 \leqq x \leqq 2\pi$とする.$2$曲線
\[ C_1:y=a \sin x,\quad C_2:y=b \cos x \]
の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とする.このとき,次の問いに答えよ.

(1)$\sin \alpha,\ \sin \beta$と$\cos \alpha,\ \cos \beta$を$a,\ b$を用いて表せ.
(2)$C_1$と$C_2$で囲まれた部分の面積$S$を$a,\ b$を用いて表せ.
(3)$S=2 \sqrt{5}$,$a+b=3$であるとき,定数$a,\ b$の値を求めよ.
関西大学 私立 関西大学 2012年 第1問
次の問いに答えよ.

(1)$0 \leqq \theta < 2\pi$のとき,不等式$\displaystyle \sin \theta \geqq \frac{1}{2}$を満たす$\theta$の値の範囲を求めよ.
(2)$\theta$が$(1)$で求めた範囲を動くとき,$f(\theta)=\sin \theta+\cos \theta$の最大値と最小値を求めよ.またそのときの$\theta$の値を求めよ.
金沢工業大学 私立 金沢工業大学 2012年 第1問
次の問いに答えよ.

(1)$x=\sqrt{7}-\sqrt{3}$,$y=\sqrt{7}+\sqrt{3}$のとき,$\displaystyle \frac{1}{x}-\frac{1}{y}=\frac{\sqrt{[ア]}}{[イ]}$であり,$\displaystyle \frac{1}{x^3}-\frac{1}{y^3}=\frac{[ウ] \sqrt{[エ]}}{[オ]}$である.
(2)$(9x-5)(2x+3)+10x-41=([カ]x-[キ])([ク]x+[ケ])$である.
(3)連立不等式$\displaystyle \frac{5x-7}{3}-1 \leqq x+2<\frac{4x-3}{2}$の解は$\displaystyle \frac{[コ]}{[サ]}<x \leqq [シ]$である.
(4)等式$2 |x-1|+x-7=0$を満たす実数$x$の値は$[スセ]$と$[ソ]$である.
(5)男子$4$人,女子$3$人が$1$列に並ぶとき,男女が交互に並ぶ並び方は$[タチツ]$通りである.
(6)$1$から$9$までの整数を$1$つずつ書いたカードが$9$枚ある.この中から同時に$2$枚を取り出したとき,それらの整数の積が偶数である確率は$\displaystyle \frac{[テト]}{[ナニ]}$である.
(7)$0^\circ \leqq \theta \leqq 90^\circ$とする.$\displaystyle \sin \theta=\frac{1}{5}$のとき,
\[ \sin (180^\circ-\theta)+\cos (180^\circ-\theta)+\tan (90^\circ-\theta)=\frac{[ア]+[イ] \sqrt{[ウ]}}{[エ]} \]
である.
(8)$a,\ b$を正の整数の定数とする.$2$次関数$y=2x^2+(a-2)x+3-b$のグラフが$x$軸と接するとき,$a=[オ]$,$b=[カ]$,あるいは$a=[キ]$,$b=[ク]$である.ただし,$[オ]<[キ]$である.
金沢工業大学 私立 金沢工業大学 2012年 第5問
四面体$\mathrm{ABCD}$において,底面の$\triangle \mathrm{BCD}$は$1$辺の長さが$2$の正三角形であり,$\angle \mathrm{BAC}=\angle \mathrm{CAD}=\angle \mathrm{DAB}=90^\circ$である.辺$\mathrm{BC}$の中点を$\mathrm{M}$とする.

(1)$\mathrm{DA}=\sqrt{[ア]}$である.
(2)ベクトル$\overrightarrow{\mathrm{DA}}$,$\overrightarrow{\mathrm{DB}}$,$\overrightarrow{\mathrm{DC}}$,$\overrightarrow{\mathrm{DM}}$について,$\overrightarrow{\mathrm{DA}} \cdot \overrightarrow{\mathrm{DB}}=\overrightarrow{\mathrm{DA}} \cdot \overrightarrow{\mathrm{DC}}=[イ]$であり,$\overrightarrow{\mathrm{DA}} \cdot \overrightarrow{\mathrm{DM}}=[ウ]$である.
(3)$\displaystyle \cos \angle \mathrm{ADM}=\frac{\sqrt{[エ]}}{[オ]}$である.
(4)$\triangle \mathrm{BCD}$を底面とする四面体$\mathrm{ABCD}$の高さは$\displaystyle \frac{\sqrt{[カ]}}{[キ]}$である.
(5)四面体$\mathrm{ABCD}$の体積は$\displaystyle \frac{\sqrt{[ク]}}{[ケ]}$である.
関西大学 私立 関西大学 2012年 第3問
$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right) (b \neq 0)$が表す$1$次変換を$f$とする.点$\mathrm{P}(c,\ 0) (c>0)$を考える.次の問いに答えよ.

(1)次の$[$①$]$から$[$④$]$を数値でうめよ.
点$\mathrm{Q}(3,\ 4)$を,点$\mathrm{R}(1,\ 2)$を中心として反時計まわりに$\displaystyle \frac{\pi}{3}$だけ回転した点の座標は
\[ \left( \begin{array}{rr}
\displaystyle \cos \frac{\pi}{3} & \displaystyle -\sin \frac{\pi}{3} \\ \\
\displaystyle \sin \frac{\pi}{3} & \displaystyle \cos \frac{\pi}{3}
\end{array} \right) \left( \begin{array}{c}
3-[$①$] \\ \\
4-[$②$]
\end{array} \right)+\left( \begin{array}{c}
[$①$] \\ \\
[$②$]
\end{array} \right) \]
を計算することにより,$([$③$],\ [$④$])$である.

(2)$B=\left( \begin{array}{rr}
\displaystyle \cos \frac{\pi}{3} & \displaystyle -\sin \frac{\pi}{3} \\
\displaystyle \sin \frac{\pi}{3} & \displaystyle \cos \frac{\pi}{3}
\end{array} \right)$,$V=\left( \begin{array}{c}
c \\
0
\end{array} \right)-A \left( \begin{array}{c}
c \\
0
\end{array} \right)$,$O=\left( \begin{array}{c}
0 \\
0
\end{array} \right)$とおく.

点$\mathrm{P}$を,点$f(\mathrm{P})$を中心として反時計まわりに$\displaystyle \frac{\pi}{3}$だけ回転した点が$(f \circ f)(\mathrm{P})$と一致するという条件を$A,\ B,\ V,\ O$を用いて表すと,$([$⑤$])V=O$と表すことができる.$A$と$B$を用いて$[$⑤$]$をうめよ.
(3)$3$点$\mathrm{P}$,$f(\mathrm{P})$,$(f \circ f)(\mathrm{P})$が正三角形の$3$つの頂点をなすとき,$a,\ b$の値を求めよ.
(4)$(3)$の正三角形の$1$辺の長さが$1$になるとき,$c$の値を求めよ.
関西大学 私立 関西大学 2012年 第4問
次の$[ ]$をうめよ.

(1)$\displaystyle \lim_{x \to -\infty}(\sqrt{x^2+3x}+x)$の値は$[$①$]$である.
(2)$\displaystyle \sum_{k=1}^n k \comb{n}{k}$を計算すると$[$②$]$となる.
(3)座標空間の原点を$\mathrm{O}$とし,$t$を実数とする.どのような$t$の値に対しても,点$\displaystyle \mathrm{P} \left( \cos t,\ \frac{-1+\sin t}{\sqrt{2}},\ \frac{1+\sin t}{\sqrt{2}} \right)$は原点を中心とする半径$[$③$]$の球面上にある.また,実数$s$に対して,点$\mathrm{Q}(0,\ s,\ -s)$とするとき,$\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{QP}}=0$となるような$s$の値は$s=0$と$s=[$④$]$である.
(4)媒介変数表示
\[ x=3^{t+1}+3^{-t+1}+1,\quad y=3^t-3^{-t} \]
で表される図形は,$x,\ y$についての方程式$[$⑤$]=1$で定まる双曲線$C$の$x>0$の部分である.また,$C$の漸近線で傾きが正の漸近線の方程式は$y=[$⑥$]$である.
(5)$\theta$の関数$\displaystyle \sin \theta \sin \left( \theta+\frac{\pi}{3} \right) \sin \left( \theta-\frac{\pi}{3} \right)$は,定数$a,\ b$を用いて$a \sin^3 \theta+b \sin \theta$と表すことができる.$a,\ b$の組$(a,\ b)$は$[$④chi$]$である.
(6)無限級数の和として定義される関数
\[ f(x)=x^2+\frac{x^2}{1+2x^2}+\frac{x^2}{(1+2x^2)^2}+\cdots +\frac{x^2}{(1+2x^2)^n}+\cdots \]
について,$\displaystyle \lim_{x \to 0}f(x)$の値は$[$\maruhachi$]$である.
広島修道大学 私立 広島修道大学 2012年 第2問
次の問に答えよ.

(1)$0 \leqq \theta<\pi$のとき,次の連立不等式を解け.
\[ \left\{ \begin{array}{l}
\cos 2\theta>\sin \theta \\
\displaystyle \sin 2\theta<\frac{1}{\sqrt{2}}
\end{array} \right. \]
(2)$a,\ b$を定数とし,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$とするとき,次の問に答えよ.

(i) 方程式$\sin^2 x+\sin x+a=0$が解をもつような$a$の範囲を求めよ.
(ii) 方程式$\sin^2 x-\sin x+b=0$が解をもつような$b$の範囲を求めよ.
広島修道大学 私立 広島修道大学 2012年 第2問
次の問に答えよ.

(1)次の等式が成り立つことを証明せよ.

(i) $\cos (\alpha+\beta+\gamma)+\cos (\alpha+\beta-\gamma)=2 \cos (\alpha+\beta) \cos \gamma$
(ii) $\displaystyle \cos \alpha \cos \beta \cos \gamma=\frac{1}{4} \biggl\{ \cos (\alpha+\beta-\gamma)+\cos (\beta+\gamma-\alpha)$
\qquad\qquad\qquad\qquad\quad $+\cos (\gamma+\alpha-\beta)+\cos (\alpha+\beta+\gamma) \biggr\}$

(2)$\triangle \mathrm{ABC}$において次の等式が成り立つことを証明せよ.
\[ \sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \]
(注意)なお,次の公式を用いてもよい.
\[ \cos \theta_1+\cos \theta_2=2 \cos \frac{\theta_1+\theta_2}{2} \cos \frac{\theta_1-\theta_2}{2} \]
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
\displaystyle \frac{1}{3}x-7 \leqq 2 \\ \\
\displaystyle \frac{3}{2}x+3>-\frac{3}{4}x+1
\end{array} \right. \]
の解は$[$1$]$である.
(2)$2$点$(5,\ 1)$,$(-2,\ 4)$を通る直線の方程式は$[$2$]$である.
(3)直線$y=ax-3$が放物線$y=x^2-4x+3a$の接線であるとき,定数$a$の値は$[$3$]$である.
(4)$\displaystyle \sqrt{3} \sin \frac{\pi}{4}-\sqrt{6} \cos \frac{\pi}{3}$の値は$[$4$]$,$\displaystyle \sin \frac{\pi}{9} \sin \frac{\pi}{18}-\cos \frac{\pi}{9} \cos \frac{\pi}{18}$の値は$[$5$]$である.
(5)赤玉が$4$つ,青玉が$3$つ,黄玉が$2$つある.これらすべての玉を$1$列に並べる並べ方は$[$6$]$通りである.これらの玉をすべて$1$つの袋に入れ,そのうち$3$つを同時に取り出すとき,異なる色の玉を取り出す確率は$[$7$]$であり,赤玉$2$つ,青玉$1$つを取り出す確率は$[$8$]$である.また,すべての玉が入った袋から玉を$4$つ同時に取り出すとき,青玉が少なくとも$1$つ含まれる確率は$[$9$]$である.
(6)$2$次関数$f(x)$は,$\displaystyle x=-\frac{3}{4}$で極値をとり,$f(-1)=-2$,$f^\prime(2)=11$を満たす.このとき,$f(x)=[$10$]$であり,$\displaystyle \int_{-1}^2 f(x) \, dx$の値は$[$11$]$である.
酪農学園大学 私立 酪農学園大学 2012年 第2問
円に内接する四角形$\mathrm{ABCD}$があり,$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CD}=7$,$\mathrm{DA}=9$,$\angle \mathrm{A}=\theta$とする.次の各問いに答えよ.
(図は省略)

(1)$\cos \theta$の値を求めよ.
(2)四角形$\mathrm{ABCD}$の面積を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。