タグ「三角比」の検索結果

134ページ目:全1924問中1331問~1340問を表示)
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の$3$次式を$1$次式の積に因数分解せよ.
\[ x^3-2x^2-5x+6 \]
(2)$x$についての$2$次方程式
\[ x^2-2kx+3k-2=0 \]
が,相異なる$2$つの実数解を持つような,定数$k$の値の範囲を求めよ.
(3)$x$の変域が$-1 \leqq x \leqq 2$であるときの$2$次関数
\[ y=2x^2-3x+1 \]
の最大値と最小値を求めよ.
(4)$5$個の数字$1,\ 2,\ 3,\ 4,\ 5$を一回ずつ使って$4$桁の数を作る.このとき$3215$以上の数はいくつあるか求めよ.
(5)$2^{1000}$は何桁の数になるか.ただし,$\log_{10}2=0.30103$とする.
(6)図のような三角形$\mathrm{ABC}$において,$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}=5:6:4$である.このとき$\sin A:\sin B:\sin C$を整数比で表せ.

(図は省略)
中央大学 私立 中央大学 2012年 第4問
$\displaystyle f(x)=\sin \left( \log \frac{1}{x} \right) (0<x \leqq 1)$とおく.$f(x)=0$となるすべての$x$を,大きい順に$a_0,\ a_1,\ a_2,\ \cdots$とする.以下の問いに答えよ.

(1)$a_n (n=0,\ 1,\ 2,\ \cdots)$を求めよ.
(2)正の定数$a,\ b$に対し
\[ \frac{d}{dx} (Ae^{-ax} \cos bx+Be^{-ax} \sin bx)=e^{-ax} \cos bx \]
を満たす定数$A,\ B$を求め,不定積分
\[ \int e^{-ax} \cos bx \, dx \]
を求めよ.
(3)$\displaystyle b_n=\int_{a_{n+1}}^{a_n} \{f(x)\}^2 \, dx (n=0,\ 1,\ 2,\ \cdots)$を,$\displaystyle t=\log \frac{1}{x}$とおくことにより求めよ.
(4)$(3)$で得られた数列$\{b_n\}$に対し,無限級数$\displaystyle \sum_{n=0}^\infty b_n$の和を求めよ.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ヒ]$までに当てはまる数字$0$~$9$を求めよ.ただし,分数は既約分数として表しなさい.

(1)$a$を実数とするとき,方程式
\[ |x|-|x^2-4|+|x+6|=a \]
を考える.この方程式の実数解が$2$個であるための条件は
\[ a<[ア],\quad [イ]<a<[ウ][エ] \]
であり,実数解を持たないための条件は
\[ a>[オ][カ] \]
である.また,次の不等式
\[ |x|-|x^2-4|+|x+6|>2 \]
には,正の整数解が$[キ]$個,負の整数解が$[ク]$個ある.
(2)空間内に点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,それぞれの大きさと内積が
\[ \begin{array}{l}
|\overrightarrow{a}|=9,\quad |\overrightarrow{b}|=12,\quad |\overrightarrow{c}|=\sqrt{42}, \\ \\
\overrightarrow{a} \cdot \overrightarrow{b}=72,\quad \overrightarrow{a} \cdot \overrightarrow{c}=57,\quad \overrightarrow{b} \cdot \overrightarrow{c}=48
\end{array} \]
であるとする.$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角は$\displaystyle \frac{1}{[ケ]} \pi$であり,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[コ][サ]}{[シ]}$である.ベクトル
\[ \overrightarrow{\mathrm{OA}}+s \overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}} \]
が$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面と直交するのは$\displaystyle s=\frac{[ス]}{[セ]}$,$\displaystyle t=\frac{[ソ]}{[タ]}$のときである.したがって,四面体$\mathrm{OABC}$の体積は$[チ][ツ]$である.
(3)三角関数についての等式
\[ [テ] \cos^3 \theta-[ト] \cos \theta-\cos 3\theta=0 \]
を利用して,$t$に関する$3$次方程式
\[ [テ]t^3-[ト]t-\frac{\sqrt{2}}{2}=0 \]
を解いたとき,$\displaystyle \cos \frac{3}{4} \pi$が解の$1$つであることがわかる.したがって,この方程式の残りの$2$つの解は
\[ \cos \frac{[ナ]}{12} \pi=\frac{\sqrt{[ニ]}+\sqrt{[ヌ]}}{[ネ]} \]

\[ \cos \frac{[ノ]}{12} \pi=\frac{\sqrt{[ニ]}-\sqrt{[ヌ]}}{[ネ]} \]
となる.これより,
\[ \tan \frac{[ナ]}{12} \pi=[ハ]-\sqrt{[ヒ]} \]
となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)$\displaystyle 0 \leqq \alpha<\beta \leqq \frac{\pi}{2}$かつ$R>0$とする.極座標$(r,\ \theta)$に関する条件
\[ 0 \leqq r \leqq R,\quad \alpha \leqq \theta \leqq \beta \]
により定まる図形を$x$軸のまわりに回転させて得られる立体の体積を$T$とする.$T$を$\alpha,\ \beta,\ R$を用いた式で表すと
\[ T=[あ] \]
である.
(2)極方程式$r=f(\theta) (0 \leqq \theta \leqq \alpha)$で表される曲線$C$と,$\theta=\alpha$で表される直線$\ell$および$x$軸の正の部分で囲まれた図形を$S$とする.ただし$\displaystyle 0<\alpha<\frac{\pi}{2}$とし,関数$f(\theta)$は連続かつ$f(\theta)>0$をみたし,$0 \leqq \theta \leqq \alpha$において増加または減少または定数とする.
$S$を$x$軸のまわりに回転させて得られる立体の体積を$V(\alpha)$とすると
\[ \frac{d}{d\alpha}V(\alpha)=[い] \]
であり,したがって
\[ V(\alpha)=[う] \]
である.また$S$を直線$\ell$のまわりに回転させて得られる立体の体積を$W(\alpha)$とすると
\[ W(\alpha)=[え] \]
である.
(3)$(2)$において$f(\theta)=\sqrt[3]{\cos \theta}$とするとき$\displaystyle V \left( \frac{\pi}{4} \right)$,$\displaystyle W \left( \frac{\pi}{4} \right)$の値を求めると
\[ V \left( \frac{\pi}{4} \right)=[お],\quad W \left( \frac{\pi}{4} \right)=[か] \]
である.
東京理科大学 私立 東京理科大学 2012年 第2問
$s,\ t$を実数とし,$0<s<1$とする.座標空間内の$3$点
\[ \begin{array}{l}
\mathrm{P}((2-s)+s \cos t,\ 0,\ (2-s)+s \sin t), \\ \\
\displaystyle \mathrm{Q} \left( \frac{2-s}{\sqrt{2}}+\frac{s}{\sqrt{2}} \cos t,\ \frac{2-s}{\sqrt{2}}+\frac{s}{\sqrt{2}} \cos t,\ (2-s)+s \sin t \right), \\ \\
\mathrm{R}(0,\ 0,\ (2-s)+s \sin t)
\end{array} \]
について,次の問いに答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を含む平面の方程式を求めよ.
(2)$\mathrm{RP}=\mathrm{RQ}$を示せ.

点$\mathrm{Q}$は,点$\mathrm{R}$を中心とし$\mathrm{RP}$を半径とする円周上に存在する.このとき,弦$\mathrm{PQ}$に対する弧$\mathrm{PQ}$と,半径$\mathrm{RP}$および半径$\mathrm{RQ}$で囲まれる扇形を$C$とする.ただし,$C$の中心角$\angle \mathrm{PRQ}$は$\pi$以下とする.

(3)$C$の面積を$s$と$t$を用いて表せ.
(4)$t$が$\displaystyle -\frac{\pi}{2} \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,$\mathrm{R}$の$z$座標の動く範囲を$s$を用いて表せ.
(5)$t$が$\displaystyle -\frac{\pi}{2} \leqq t \leqq \frac{\pi}{2}$の範囲を動くとき,扇形$C$が通過する部分の体積$V_1$を$s$を用いて表せ.
(6)$t$が$\displaystyle \frac{\pi}{2} \leqq t \leqq \frac{3\pi}{2}$の範囲を動くとき,扇形$C$が通過する部分の体積$V_2$を$s$を用いて表せ.
(7)上の$(5)$,$(6)$の$V_1$,$V_2$に対して,$s$が$\displaystyle \frac{1}{4} \leqq s \leqq \frac{1}{2}$の範囲を動くときの$V_1-V_2$の最大値とそのときの$s$の値を求めよ.
日本女子大学 私立 日本女子大学 2012年 第3問
$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$\mathrm{A}$,$\mathrm{B}$の$2$人がゲームをして,先に$3$勝した方が優勝する.各回のゲームで$\mathrm{A}$が勝つ確率を$\sin^2 \theta$,$\mathrm{B}$が勝つ確率を$\cos^2 \theta$とする.$t=\cos 4\theta$とおく.以下の問いに答えよ.

(1)ちょうど$3$回目のゲームで優勝が決まる確率を$t$の$1$次式で表せ.
(2)ちょうど$4$回目のゲームで優勝が決まる確率$p(\theta)$を$t$の$2$次式で表せ.
(3)確率$p(\theta)$の最大値を求めよ.
日本女子大学 私立 日本女子大学 2012年 第2問
$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,方程式
\[ \log_{\frac{1}{2}} \cos \theta-\log_{\frac{1}{4}} \sin \theta-\frac{3}{2} \log_2 \tan \theta=\frac{1}{2} (1-\log_23) \]
を満たす$\theta$の値を求めよ.
東京理科大学 私立 東京理科大学 2012年 第2問
以下の問いに答えなさい.

(1)関数$\displaystyle f(x)=\frac{1}{3} \cos 3x-\frac{1}{2} \cos 2x+\cos x (0<x<\pi)$について考える.

(i) $\displaystyle x=\frac{\pi}{12}$のとき,$f(x)$の値$\displaystyle f \left( \frac{\pi}{12} \right)$を求めなさい.
(ii) 関数$f(x)$の極値を求めなさい.

(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される座標平面上の点の移動($1$次変換)$f$が条件

「点$\mathrm{P}(x,\ y)$が直線$y=-x+1$上にあるとき,点$\mathrm{P}(x,\ y)$の$f$による像$\mathrm{P}^\prime(x^\prime,\ y^\prime)$はつねに直線$\displaystyle y=-\frac{2}{3}x+\frac{7}{3}$上にある.また,点$\mathrm{P}(x,\ y)$が直線$y=2x-1$上にあるとき,点$\mathrm{P}(x,\ y)$の$f$による像$\mathrm{P}^\prime(x^\prime,\ y^\prime)$はつねに直線$x=1$上にある」

を満たすとき,$A$を求めなさい.
東京理科大学 私立 東京理科大学 2012年 第1問
次の問いに答えよ.

(1)$1$枚の硬貨をくり返し投げるゲームを行う.このゲームを,表がちょうど$4$回出たところ,または,裏がちょうど$4$回出たところで終了することにする.ただし,硬貨を投げたとき,表が出る確率と裏が出る確率はいずれも$\displaystyle \frac{1}{2}$である.

(i) 硬貨を$k$回投げたところで終了する確率を$p_k$とすると,
\[ p_4=\frac{[ア]}{[イ]},\quad p_5=\frac{[ウ]}{[エ]},\quad p_7=\frac{[オ]}{[カ][キ]} \]
である.
(ii) このゲームが終了するまでに硬貨を投げる回数の期待値は
\[ \frac{[ク][ケ]}{[コ][サ]} \]
である.

(2)$0^\circ \leqq \theta \leqq 180^\circ$の$\theta$に対して,$x$に関する$2$次方程式
\[ x^2+(\sqrt{2} \sin 2\theta)x+2 \cos \theta=0 \]
を考える.

(i) この方程式が異なる$2$つの実数解をもつのは,
\[ [ア][イ]^\circ<\theta \leqq [ウ][エ][オ]^\circ \]
のときである.

以下,この方程式が異なる$2$つの実数解をもつ場合について考え,この$2$つの実数解を$\alpha,\ \beta$とする.

(ii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束するのは,
\[ [カ][キ][ク]^\circ<\theta \leqq [ケ][コ][サ]^\circ \]
のときである.
(iii) 無限等比級数
\[ 1+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)+\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^2+\cdots +\left( \frac{1}{\alpha}+\frac{1}{\beta} \right)^n+\cdots \]
が収束して,その和が$2-\sqrt{2}$となるのは,
\[ \theta=[シ][ス][セ]^\circ \]
のときである.

(3)$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$を$2:1$の比に内分する点を$\mathrm{C}$($\mathrm{AC}:\mathrm{CB}=2:1$),線分$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{D}$($\mathrm{OD}:\mathrm{DC}=1:2$)とする.辺$\mathrm{OA}$上に点$\mathrm{P}$を,辺$\mathrm{OB}$上に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{D}$を通るようにとる.

(i) $\displaystyle \frac{\mathrm{OA}}{\mathrm{OP}}+2 \times \frac{\mathrm{OB}}{\mathrm{OQ}}=[ア]$である.


以下,$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\angle \mathrm{AOB}=60^\circ$とする.


(ii) $\mathrm{OP}=1$のとき,$\triangle \mathrm{OPQ}$の面積は
\[ \frac{[イ]}{[ウ][エ]} \times \sqrt{[オ]} \]
である.
(iii) 線分$\mathrm{OP}$の長さと線分$\mathrm{OQ}$の長さの和$\mathrm{OP}+\mathrm{OQ}$がもっとも小さくなるように点$\mathrm{P}$,$\mathrm{Q}$をとるとき,
\[ \mathrm{OP}=\frac{[カ]+[キ] \sqrt{[ク]}}{[ケ]} \]
である.このとき,
\[ \mathrm{OP}+\mathrm{OQ}=\frac{[コ]+[サ] \sqrt{[シ]}}{[ス]} \]
である.
金沢工業大学 私立 金沢工業大学 2012年 第4問
座標平面上を運動する点$\mathrm{P}$の時刻$t$における座標$(x,\ y)$が
\[ x=2t-\sin 2t,\quad y=1-\cos 2t \quad (0 \leqq t \leqq \pi) \]
で表される.

(1)点$\mathrm{P}$の時刻$\displaystyle t=\frac{\pi}{6}$における速度は$([コ],\ \sqrt{[サ]})$である.
(2)点$\mathrm{P}$の速さは$2 \sqrt{[シ]([ス]-\cos [セ]t)}$であり,その速さは$\displaystyle t=\frac{\pi}{[ソ]}$のとき最大値$[タ]$をとる.
(3)点$\mathrm{P}$の加速度は,その大きさが一定の値$[チ]$をとり,$x$軸の正の方向を向くのは$\displaystyle t=\frac{\pi}{[ツ]}$のときであり,$x$軸の負の方向を向くのは$\displaystyle t=\frac{[テ]}{[ト]} \pi$のときである.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。