タグ「三角比」の検索結果

133ページ目:全1924問中1321問~1330問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第4問
座標空間の原点を$\mathrm{O}$とし,座標空間内に$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 1)$,$\mathrm{C}(1,\ 1,\ 1)$をとる.また$0<s<1$,$0<t<1$とし,線分$\mathrm{AB}$を$s:(1-s)$に内分する点を$\mathrm{P}$,線分$\mathrm{OC}$を$t:(1-t)$に内分する点を$\mathrm{Q}$とする.以下の問いに答えなさい.

(1)$2$点$\mathrm{P}$,$\mathrm{Q}$の座標を,それぞれ$s,\ t$を用いて表しなさい.
(2)$\displaystyle s=\frac{1}{4}$,$\displaystyle t=\frac{1}{2}$のときの$\angle \mathrm{APQ}$の大きさを$\theta$とする.このとき$\cos \theta$の値を求めなさい.ただし,$0^\circ<\theta<180^\circ$とする.
(3)線分$\mathrm{PQ}$の長さを$l$とする.このとき$s,\ t$が,それぞれ$0<s<1$,$0<t<1$の範囲を動くときの$l$の最小値を求めなさい.
龍谷大学 私立 龍谷大学 2012年 第1問
次の問いに答えなさい.

(1)関数$y=\sin^2 x+4 \sin x \cos x+5 \cos^2 x$の最大値と最小値を求めなさい.
(2)$\displaystyle \sum_{k=1}^{99} \log_{10} \frac{k}{k+1}$を求めなさい.
(3)定積分$\displaystyle \int_0^1 (x+1)e^x \, dx$を求めなさい.
龍谷大学 私立 龍谷大学 2012年 第4問
$0 \leqq x \leqq 2\pi$の範囲で関数
\[ f(x)=x+1-\cos x+\sqrt{3} \sin x \]
を考える.

(1)$f(x)$の極値を求め,$y=f(x)$のグラフを描きなさい.
(2)曲線$y=f(x)$,$x$軸,直線$x=2\pi$で囲まれた部分の面積を求めなさい.
学習院大学 私立 学習院大学 2012年 第3問
$a$を実数とする.方程式
\[ \cos^2 x-2a \sin x-a+3=0 \]
の解で$0 \leqq x<2\pi$の範囲にあるものの個数を求めよ.
学習院大学 私立 学習院大学 2012年 第2問
$0 \leqq t<2\pi$に対して,$2$次方程式
\[ x^2+(\sin t-2)x+\sin 2t-\sin t=0 \]
を考える.

(1)すべての$t$に対して方程式は相異なる$2$つの実数解をもつことを示せ.
(2)方程式が$2$つの正の実数解をもつための$t$の範囲を求めよ.
西南学院大学 私立 西南学院大学 2012年 第1問
$0 \leqq x<2\pi$のとき,以下の問に答えよ.

(1)$2 \cos 2x=1-4 \cos x$の解は,$\displaystyle x=\frac{[ア]}{[イ]}\pi$,$\displaystyle \frac{[ウ]}{[エ]}\pi$である.
ただし,$\displaystyle \frac{[ア]}{[イ]}<\frac{[ウ]}{[エ]}$とする.

(2)$\displaystyle \left( \sin \frac{x}{2}+\cos \frac{x}{2} \right) \cos \frac{x}{2}=1+\cos x$の解は,$\displaystyle x=\frac{1}{[オ]}\pi$,$\displaystyle \frac{1}{[カ]}\pi$である.
ただし,$[オ]<[カ]$とする.
西南学院大学 私立 西南学院大学 2012年 第2問
以下の問に答えよ.

(1)$\displaystyle \pi \leqq \theta<2\pi,\ \cos \theta=\frac{3}{5}$のとき$\displaystyle \sin 2\theta=\frac{[ケコサ]}{[シス]}$,$\displaystyle \cos 2\theta=\frac{[セソ]}{[タチ]}$である.
(2)$\displaystyle \cos 15^\circ \cos 45^\circ \cos 75^\circ=\frac{\sqrt{[ツ]}}{[テ]}$である.
(3)$\sin 20^\circ+\sin 40^\circ-\cos 10^\circ=[ト]$である.
中央大学 私立 中央大学 2012年 第1問
以下の問いに答えよ.

(1)$\sin 3\theta$を$\sin \theta$を用いて表せ.

(2)$\displaystyle \sin \frac{2\pi}{5}=\sin \frac{3\pi}{5}$に着目して$\displaystyle \cos \frac{\pi}{5}$と$\displaystyle \sin \frac{\pi}{5}$の値を求めよ.

(3)積$\displaystyle \sin \frac{\pi}{5} \sin \frac{2\pi}{5} \sin \frac{3\pi}{5} \sin \frac{4\pi}{5}$の値を求めよ.
東京理科大学 私立 東京理科大学 2012年 第3問
$\{\theta_k\}$を初項$0$,交差$\displaystyle \frac{\pi}{4}$の等差数列,$\{r_k\}$を初項$1$,公比$\displaystyle \frac{1}{2}$の等比数列とし,自然数$k$に対して,行列$A_k$,$B_k$を
\[ A_k=\left( \begin{array}{cc}
r_k \cos \theta_k & r_k \sin \theta_k \\
r_k \sin \theta_k & -r_k \cos \theta_k
\end{array} \right),\quad B_k=\left( \begin{array}{cc}
r_k \cos \theta_k & -r_k \sin \theta_k \\
-r_k \sin \theta_k & -r_k \cos \theta_k
\end{array} \right) \]
とおく.$C_k=A_kA_{k+1}$,$D_k=B_k B_{k+1}$とするとき,次の問いに答えよ.

(1)$C_k$を$k$を用いて表せ.
(2)$D_k$を$k$を用いて表せ.
(3)$m$を自然数とするとき,次の行列の和
\[ \left( \frac{1}{r_kr_{k+1}}C_k \right)^2+\left( \frac{1}{r_kr_{k+1}}C_k \right)^4+\left( \frac{1}{r_kr_{k+1}} C_k \right)^6+\cdots +\left( \frac{1}{r_kr_{k+1}}C_k \right)^{2m} \]
を求めよ.
(4)$C_k^2D_k^2$を求めよ.
(5)次の行列の和
\[ C_1^2D_1^2+2C_2^2D_2^2+3C_3^2D_3^2+\cdots +nC_n^2D_n^2 \]
を$\left( \begin{array}{cc}
x_n & y_n \\
z_n & w_n
\end{array} \right)$とするとき,$\displaystyle \lim_{n \to \infty}x_n$,$\displaystyle \lim_{n \to \infty}y_n$,$\displaystyle \lim_{n \to \infty}z_n$,$\displaystyle \lim_{n \to \infty}w_n$を求めよ.
ただし,必要ならば,実数$a (a>1)$に対して,$\displaystyle \lim_{n \to \infty} \frac{n}{a^n}=0$が成り立つことを用いてよい.
中央大学 私立 中央大学 2012年 第1問
次の各問いに答えよ.

(1)次の式を展開せよ.
\[ (x+1)(x-1)(2x+3)(3x-1) \]
(2)$m$は自然数である.$x$についての$2$次方程式
\[ x^2-2mx+6m-8=0 \]
が,実数解を持たないとき,$m$の値を求めよ.
(3)$0^\circ \leqq \theta \leqq 360^\circ$において,次の関数の最大値と最小値を求めよ.
\[ y=2 \sin^2 \theta+\cos \theta-2 \]
(4)次の定積分の値を求めよ.
\[ \int_1^2 (3x^2+4x+2) \, dx \]
(5)大小$2$つのさいころを投げ,出た目の数をそれぞれ$a,\ b$とするとき,$|a-b| \geqq 3$となる確率を求めよ.
(6)半径$r$の球の体積$\displaystyle V=\frac{4 \pi r^3}{3}$を,$r$で微分して,導関数$V^\prime$を求めよ.これは,半径$r$の球の何を表しているか.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。