タグ「三角比」の検索結果

129ページ目:全1924問中1281問~1290問を表示)
明治大学 私立 明治大学 2012年 第1問
次の各設問の$[1]$から$[9]$までの空欄にあてはまる数値を入れよ.

(1)関数$\displaystyle y=3 \sin \left( 2x- \frac{2}{3} \pi \right)$のグラフは$y=3 \sin 2x$のグラフを$x$軸方向に$[1]$だけ平行移動したものであり,その正で最小の周期は$[2]$である.
(2)座標平面上の$\triangle \mathrm{ABC}$において,線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{P}$の座標が$(1,\ 5)$,線分$\mathrm{AC}$を$4:1$に外分する点$\mathrm{Q}$の座標が$(3,\ -3)$,$\triangle \mathrm{ABC}$の重心の座標が$(0,\ 2)$であるとき,点$\mathrm{A}$の座標は$([3],\ [4])$である.
(3)関数$\displaystyle y=\left( \log_3 \frac{x}{9} \right)^3 + 6\log_{\frac{1}{3}} \sqrt{3x} (1 \leqq x \leqq 27)$の最小値は$[5]$,最大値は$[6]$である.また,最大値$[6]$をとるときの$x$は$[7]$である.
(4)水を満たしたある容器の底に穴を開けてから$x$分後における容器内の水深を$y$メートルとすると,$y$は次式で表される.ただし,$0 \leqq x \leqq 90$とする.
\[ y = 0.9 \times 10^{-4}x^2 - 1.8\times 10^{-2} x +1 \]
$x_1$分から$x_2$分の間に,容器から出た水の量を$\int_{x_1}^{x_2} y\, dx$とする.最初の$1$分間($x_1=0,\ x_2=1$)に出た水の量に対する$5$分から$6$分の間($x_1=5,\ x_2=6$)に出た水の量の割合は約$[8] \%$である.容器内の水深$y$が,$x=0$のときの半分になるのは約$[9]$分後である.
明治大学 私立 明治大学 2012年 第2問
空欄$[ ]$に当てはまるものを入れよ.

$\mathrm{AB}=\mathrm{AC}=r$である二等辺三角形$\mathrm{ABC}$がある.$\angle \mathrm{BAC}=\theta$とおく.点$\mathrm{P}$は$\angle \mathrm{PBC}=\angle \mathrm{PCA}=90^\circ$を満たす.次の問に答えよ.
(1)$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.このとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{[ア]}{[イ]} \overrightarrow{b}+\frac{[ウ]}{[エ]} \overrightarrow{c} \]
が成り立つ.
(2)$\triangle \mathrm{ABC}=\triangle \mathrm{BCP}$であるのは$\displaystyle \cos \theta=\frac{[オ]}{[カ]}$のときである.このとき,$\displaystyle \triangle \mathrm{ABC}=\frac{\sqrt{[キ]}}{[ク]} \cdot r^2$である.
(3)$\mathrm{AB}=\mathrm{BP}$であるのは$\displaystyle \cos \theta=\frac{[ケ]-\sqrt{[コサ]}}{[シ]}$のときである.
明治大学 私立 明治大学 2012年 第3問
$xy$平面上に点$\mathrm{P}(1,\ 0)$を中心とする円:$(x-1)^2+y^2=1$がある.この円周上に$4$点$\displaystyle \mathrm{A}(\frac{9}{5},\ \frac{3}{5})$,$\displaystyle \mathrm{B}(\frac{1}{13},\ \frac{5}{13})$,$\mathrm{C}(\alpha,\ \beta)$,$\mathrm{D}(\gamma,\ \delta)$がある.ただし,$\displaystyle \delta<-\frac{4}{5}$とする.$\angle \mathrm{ABC}=90^{\circ}$であり,三角形$\mathrm{ACD}$の面積は$\displaystyle \frac{63}{65}$であるとする.

(1)点$\mathrm{C}$の座標は,$\displaystyle\left( \frac{[ツ]}{[テ]},\ -\displaystyle\frac{[ト]}{[テ]} \right)$である.

(2)$\mathrm{AB}$の長さは$\displaystyle \frac{[ナニ] \sqrt{[ヌネ]}}{[ヌネ]}$であり,$\displaystyle \cos \angle \mathrm{BDC}=\frac{[ノ] \sqrt{[ハヒ]}}{[ハヒ]}$である.

(3)点$\mathrm{D}$の座標は$\displaystyle \left( \frac{[フヘ]}{[ホマ]},\ -\frac{[ミム]}{[メモ]} \right)$であり,$\displaystyle \cos \angle \mathrm{BPD}=-\frac{[ヤユヨ]}{169}$である.
上智大学 私立 上智大学 2012年 第1問
次の空欄に適する数,数式を入れよ.

(1)$f(x)=|2 \sin x-\cos 2x+\displaystyle\frac{1|{2}}$とおく.$\sin x=[ア]$のとき$f(x)$は最大値$\displaystyle\frac{[イ]}{[ウ]}$をとる.また,$\sin x = \displaystyle\frac{[エ]+\sqrt{[オ]}}{[カ]}$のとき$f(x)$は最小値[キ]をとる.
(2)$x,\ y,\ z$は次の条件を満たす実数とする.
\[ 0 \leqq x \leqq y \leqq z \leqq \frac{4}{5}, \quad x+2y+z = 1 \]
このとき,$y$の最小値は$\displaystyle\frac{[ク]}{[ケ]}$,最大値は$\displaystyle\frac{[コ]}{[サ]}$である.
(3)不等式
\[ \log_2 x - 6\log_x 2 \geqq 1 \]
の解は
\[ \frac{[シ]}{[ス]} \leqq x < [セ], \quad x \geqq [ソ] \]
である.
青森中央学院大学 私立 青森中央学院大学 2012年 第7問
$\displaystyle\sin \alpha = \frac{3}{5},\ \sin \beta = \frac{4}{5} (0< \alpha < \frac{\pi}{2},\ \frac{\pi}{2} < \beta < \pi)$のとき,$\cos (\alpha+\beta)=\gamma$となる.$25(\gamma+1)$の値を求めよ.
上智大学 私立 上智大学 2012年 第1問
$x$の$3$次式$f(x)=ax^3+bx^2+cx+d$は,$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において
\[ f(\cos \theta) = \cos 3\theta - \sqrt{3} \cos 2\theta \]
を常に満たすとする.

(1)$a=[ア],\ b=[イ]\sqrt{[ウ]},\ c=[エ],\ d=\sqrt{[オ]}$である.
(2)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,$\cos 3\theta - \sqrt{3}\cos 2\theta$は
\[ \theta = \frac{[カ]}{[キ]}\pi \text{のとき最小値} \frac{[ク]}{[ケ]}\sqrt{[コ]} \text{をとり,} \]
\[ \theta = \frac{[サ]}{[シ]}\pi \text{のとき最大値} \sqrt{[ス]} \text{をとる.} \]
(3)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,
\[ \cos 3\theta - \sqrt{3}\cos 2\theta \geqq \alpha\cos \theta + \sqrt{3} \]
が常に成り立つような$\alpha$の最大値は$\displaystyle\frac{[セ]}{[ソ]}$である.
(4)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$において,
\[ \cos 3\theta - \sqrt{3}\cos 2\theta \leqq \beta\cos \theta + \sqrt{3} \]
が常に成り立つような$\beta$の最小値は$[タ]+[チ]\sqrt{[ツ]}$である.
立教大学 私立 立教大学 2012年 第1問
次の空欄$[ア]$から$[コ]$に当てはまる数または式を記入せよ.

(1)方程式$(x+3)|x-4|+2x+6=0$の解は$x=[ア]$である.
(2)曲線$y=x^3-3x^2+1$上の点$(1,\ -1)$における接線が,放物線$y=ax^2+a$と接するとき,$a=[イ]$である.ただし,$a>0$とする.
(3)$\displaystyle\frac{1}{2-i}+\frac{1}{3+i}=a+bi$となる実数$a,\ b$を求めると,$a=[ウ]$,$b=[エ]$である.ただし,$i$は虚数単位とする.
(4)白玉$4$個と赤玉$2$個が入っている袋がある.この袋から同時に玉を$3$個とりだすとき,白玉の数がちょうど$2$個である確率は$[オ]$である.
(5)$\displaystyle\tan \theta=\frac{1}{2}$のとき,$\displaystyle\frac{\sin \theta}{1+\cos \theta} = [カ]$である.ただし,$\displaystyle 0 < \theta < \frac{\pi}{2}$とする.
(6)実数$x$が$x>1$の範囲を動くとき,$\log_3 x + 3\log_x 3$の最小値は$[キ]$である.
(7)関数$f(x)$が実数$a$に対して,等式$\displaystyle\int_a^x f(t)\, dt = x^3+x^2-6x-a^2-9$を満たすとき,$a$の値は$[ク]$である.
(8)$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に点$\mathrm{D}$があり,$\triangle \mathrm{ABD}$と$\triangle \mathrm{ACD}$の面積の比が$3:2$であるとき,$\overrightarrow{\mathrm{AD}} = [ケ]\overrightarrow{\mathrm{AB}}+[コ]\overrightarrow{\mathrm{AC}}$である.
上智大学 私立 上智大学 2012年 第1問
次の各問に答えよ.

(1)関数$f(x)$を
\[ f(x) = \log_4 32x - \log_8 64x + \log_{16} 8x\]
とする.$5 \leqq f(x) \leqq 10$となるためにの必要十分条件は
\[ 2^a \leqq x \leqq 2^b,\quad a=[ア],\ b=[イ] \]
である.
(2)関数$g(x)$を
\[ g(x) = 4\cos^2 \frac{x}{2} +2\sin^2\frac{x}{2} +\sqrt{3}\sin x \]
とする.$0 \leqq x < 2\pi$とすると,$\displaystyle x=\frac{[ウ]}{[エ]}\pi$のとき$g(x)$は最大値をとる.
(3)$m$と$n$を$m \geqq n$を満たす正の整数とする.3辺の長さがそれぞれ$m+1,\ m,\ n$であり,それらの和が100以下であるような直角三角形は,全部で[オ]個ある.また,そのうち面積が最も大きいものの斜辺の長さは[カ]である.
法政大学 私立 法政大学 2012年 第1問
次の問いに答えよ.

(1)$a>0$として,$x=\log_2 a$とおく.
$x=5$のとき,$a=[アイ]$である.次に,$2a \neq 1$のとき,不等式
\[ \log_2 256a > 3 \log_{2a} a\]
の左辺は$[ウ]+x$,右辺は$\displaystyle \frac{[エ]x}{[オ]+x}$である.したがって,上の不等式を満たす$x$の値の範囲は
\[ [カキ] < x < [クケ],\quad x > [コサ] \]
である.
(2)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$を満たすとする.また,
\[ s=\frac{1}{4}\cos \theta, \quad t=\frac{16\sqrt{3}}{3}\sin \left( \theta+\frac{2}{3}\pi \right) \]
とおく.$s$のとり得る値の範囲は
\[ 2^{\frac{[シス]}{[セ]}} \leqq s \leqq 2^{[ソタ]} \]
であり,$t$のとり得る値の範囲は
\[ [チ]\sqrt{[ツ]} - \frac{[テ]\sqrt{[ト]}}{[ナ]} \leqq t \leqq [ニ] \]
である.
\[ st=[ヌ]+\frac{[ネ]\sqrt{[ノ]}}{[ハ]} \sin \left( 2\theta + \frac{[ヒ]}{[フ]}\pi \right) \]
であり,$st<1$となる$\theta$の値の範囲は,$\displaystyle \theta > \frac{\pi}{[ヘ]}$である.
法政大学 私立 法政大学 2012年 第1問
$A=105^\circ$,$B=30^\circ$,$b=2\sqrt{2}$の三角形$\mathrm{ABC}$について,つぎの問いに答えよ.ただし,$b$は辺$\mathrm{AC}$の長さを表すものとする.

(1)$\sin 105^\circ$の値を求めよ.
(2)外接円の半径,および,辺$\mathrm{BC}$の長さを求めよ.
(3)$\mathrm{A}$から辺$\mathrm{BC}$に延ばした直線と辺$\mathrm{BC}$の交点を$\mathrm{P}$とする.三角形$\mathrm{ABP}$の外接円の半径が$3$のとき,$\mathrm{PC}$の長さを求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。