タグ「三角比」の検索結果

121ページ目:全1924問中1201問~1210問を表示)
富山大学 国立 富山大学 2012年 第2問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ1つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)$\displaystyle f \left( \frac{2}{k} \right)+f \left( \frac{2}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
富山大学 国立 富山大学 2012年 第2問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ1つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)$\displaystyle f \left( \frac{2}{k} \right)+f \left( \frac{2}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
富山大学 国立 富山大学 2012年 第2問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ1つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)3以上の素数$p$に対して,$\displaystyle f \left( \frac{p}{k} \right)+f \left( \frac{p}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
富山大学 国立 富山大学 2012年 第1問
$x>0$のとき,$\tan \theta =x$となる$\theta$が$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲にただ$1$つ存在する.その$\theta$を$f(x)$と表すことにする.

(1)$\displaystyle f \left( \frac{2}{k} \right)+f \left( \frac{2}{l} \right) = \frac{\pi}{4}$を満たす自然数の組$(k,\ l)$を求めよ.ただし,$k \leqq l$とする.
(2)自然数$m,\ n$について,$\displaystyle \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を$m$と$n$を用いて表せ.
(3)$\displaystyle \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \sin \left\{ 2f \left( \frac{m}{n} \right) \right\}$を求めよ.
九州工業大学 国立 九州工業大学 2012年 第2問
Oを原点とする座標平面上に点A$(0,\ 1)$があり,点Aからの距離が4である点P$(x,\ y)$が$x>0$,$y>1$をみたすように動く.直線APが$x$軸の正の向きとなす角を$\theta$,点Pから$x$軸に垂線を下ろしたときの交点をQとする.以下の問いに答えよ.

(1)点Pの座標を$\theta$を用いて表せ.
(2)四角形OAPQの面積$S$を$\theta$を用いて表せ.
(3)(2)で求めた$S$が最大となるときの$\sin \theta$の値を求めよ.
(4)四角形OAPQを$x$軸のまわりに1回転させてできる立体の体積$V$を$\theta$を用いて表せ.
(5)(4)で求めた$V$が$\displaystyle \sin \theta=\frac{3}{4}$で最大となることを示せ.
岐阜大学 国立 岐阜大学 2012年 第5問
$a$を正の実数とする.$t$を媒介変数として
\[ x(t)=\cos 2t,\ y(t)=\sin at \quad (-\pi \leqq t \leqq \pi) \]
で表される曲線$C$について,以下の問に答えよ.

(1)$a=1$とする.$C$を$x$と$y$の方程式で表し,その概形を$xy$平面上にかけ.
(2)$a=2$とする.$C$を$x$と$y$の方程式で表し,その概形を$xy$平面上にかけ.
(3)定積分
\[ \int_{-\pi}^\pi x(t)y^\prime(t) \, dt \]
の値を,$a \neq 2$と$a=2$のそれぞれの場合について求めよ.
(4)(3)で求めた定積分の値を$a$の関数と考えて$\displaystyle P(a)=\int_{-\pi}^\pi x(t)y^\prime(t) \, dt$とおく.$\displaystyle \lim_{a \to 2}P(a)$の値を求めよ.
岩手大学 国立 岩手大学 2012年 第2問
関数$f(x)=2\sin^2 x+4\sin x +3\cos 2x$について,以下の問いに答えよ.ただし,$0 \leqq x < 2\pi$である.

(1)$t=\sin x$とするとき,$f(x)$を$t$の式で表せ.
(2)$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値をすべて求めよ.
(3)方程式$f(x)=a$の相異なる解が$4$個であるような実数$a$の値の範囲を求めよ.
福岡教育大学 国立 福岡教育大学 2012年 第1問
次の問いに答えよ.

(1)$a$を$0$でない実数とする.$x$についての$3$次方程式$x^3-a^3=0$の$2$つの虚数解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\alpha-\beta}{\alpha+\beta}$の値を求めよ.
(2)定積分$\displaystyle \int_{-\frac{3\pi}{2}}^{\frac{\pi}{2}} \sin |2x| \, dx$を求めよ.
(3)連続する$3$つの自然数$a,\ b,\ c$があり,それらは$a^2+b^2=c^2,\ a<b<c$をみたすとする.このような$a,\ b,\ c$はただ$1$組しかないことを示せ.
秋田大学 国立 秋田大学 2012年 第2問
$a$を実数とする.$\theta$が
\[ \frac{1}{\sin \theta}-\frac{1}{\cos \theta}=a \]
を満たしているとき,次の問いに答えよ.ただし,$0^\circ<\theta<45^\circ$とする.

(1)$\cos \theta-\sin \theta$を$a$で表せ.
(2)$\displaystyle a=\frac{4}{3}$のとき,$\theta$と$25^\circ$の大小を比べよ.
秋田大学 国立 秋田大学 2012年 第2問
$\triangle$OABにおいて$\overrightarrow{\mathrm{OA}}=(-2,\ 1)$,$\overrightarrow{\mathrm{OB}}=(1,\ 3)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\theta$とする.このとき,次の問いに答えよ.

(1)$\cos \theta$の値を求めよ.
(2)$\triangle$OABの面積を求めよ.
(3)OAの中点をCとし,AB上に$\text{OM} \perp \text{BC}$となるように点Mをとる.$\text{AM}:\text{MB}$を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。