タグ「三角比」の検索結果

112ページ目:全1924問中1111問~1120問を表示)
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[ケ]$に当てはまる数または式を記入せよ.

(1)不等式$x |x+2|<2x$の解は$[ア]$である.

(2)$a$を実数とする.$\displaystyle \frac{3+i}{1+ai}$の実部と虚部の和が$0$であるとき,$a=[イ]$である.ただし,$i$は虚数単位とする.
(3)座標平面上の点$(2,\ 1)$から円$x^2+y^2=1$へ引いた接線の方程式は$y=1$と$y=[ウ]$である.
(4)${128}^{\frac{1}{6}},\ 8^{\frac{2}{5}},\ {81}^{\frac{1}{5}}$のうち最大のものは$[エ]$である.
(5)$\cos {165}^\circ$の値は$[オ]$である.
(6)平面上に三角形$\mathrm{OAB}$と点$\mathrm{P}$があり,$\overrightarrow{\mathrm{OP}}+2 \overrightarrow{\mathrm{AP}}+3 \overrightarrow{\mathrm{BP}}=\overrightarrow{\mathrm{0}}$を満たしている.直線$\mathrm{AB}$と直線$\mathrm{OP}$との交点を$\mathrm{Q}$とするとき,$\overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}}$である.
(7)数列$\{a_k\}$は$a_1=0$と漸化式$a_{k+1}=2a_k+1 (k=1,\ 2,\ 3,\ \cdots)$で定められている.このとき,$\displaystyle \sum_{k=1}^n \log_8 (1+a_k)=[ク]$である.
(8)数字の$1$が書かれたカードが$1$枚,数字の$2$が書かれたカードが$2$枚,数字の$3$が書かれたカードが$3$枚ある.この$6$枚のカード全部を$1$列に並べるとき,数字の$2$が書かれたカードが連続して並ぶ確率は$[ケ]$である.
立教大学 私立 立教大学 2013年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AB}=4$,$\mathrm{AC}=3$,$\angle \mathrm{A}={60}^\circ$とする.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さは$[ア]$である.
(2)$\tan {75}^\circ$の値は$[イ]$である.
(3)$5^x-5^{-x}=6$のとき,$5^x+5^{-x}=[ウ]$である.

(4)$\displaystyle \frac{1}{1+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\cdots +\frac{1}{\sqrt{79}+\sqrt{81}}=[エ]$である.

(5)$4$次方程式$2x^4-5x^2-3=0$の解は$x=[オ],\ [カ],\ [キ],\ [ク]$である.
(6)$2$点$\mathrm{A}(-6,\ -1,\ 2)$,$\mathrm{B}(-4,\ 2,\ 7)$からの距離が等しい点$\mathrm{P}(x,\ y,\ z)$のうち,$x,\ y,\ z$がすべて正の整数となるのは$(x,\ y,\ z)=[ケ]$である.
(7)不等式$\sqrt{|x-3|}<5$を満たす$x$の範囲は,$[コ]$である.
(8)正六角形の頂点を反時計回りに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.このとき,ベクトル$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{BC}}$を用いて表すと$\overrightarrow{\mathrm{AE}}=[サ]$である.
東京医科大学 私立 東京医科大学 2013年 第1問
次の$[ ]$を埋めよ.

(1)数列$\{a_n\}$が関係式
\[ a_1=1,\quad a_{n+1}=\frac{(n+1)a_n}{(3n+1)a_n+n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められているとき,$\displaystyle a_{200}=\frac{[ア]}{[イウエ]}$である.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$かつ$\displaystyle \cos \theta=\frac{1}{8}$のとき,$\displaystyle \sin \frac{3 \theta}{2}=\frac{[オ] \sqrt{[カ]}}{[キク]}$である.
千歳科学技術大学 私立 千歳科学技術大学 2013年 第4問
関数$y=4 \cos^3 x+3 \sin^2 x-6 \cos x (0 \leqq x \leqq 2\pi)$について以下の問いに答えなさい.

(1)$\cos x=t$とおくとき,$y=4 \cos^3 x+3 \sin^2 x-6 \cos x$を$t$の関数として表しなさい.
(2)$t$の取り得る範囲を求めなさい.
(3)$y=4 \cos^3 x+3 \sin^2 x-6 \cos x$の最大値と最小値を求めなさい.またそのときの$x$の値も求めなさい.
愛知学院大学 私立 愛知学院大学 2013年 第3問
$0 \leqq x<2\pi$,$0 \leqq y<2\pi$とする.

(1)方程式$\sin 2x+\sin x=0$の解は,
\[ x=0,\quad \frac{[ア]}{[イ]} \pi,\quad \pi,\quad \frac{[ウ]}{[エ]} \pi \]
である.ただし$\displaystyle \frac{[ア]}{[イ]}<\frac{[ウ]}{[エ]}$とする.

(2)連立方程式$\sin x+\sin y=1$,$\cos x-\cos y=\sqrt{3}$の解は
\[ x=\frac{[オ]}{[カ]} \pi,\quad y=\frac{[キ]}{[ク]} \pi \]
である.
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2013年 第2問
以下の問いに答えなさい.

(1)図の直角三角形$\mathrm{ABC}$において$\mathrm{AB}=2$,$\mathrm{AC}=1$とする.また,辺$\mathrm{BC}$を二等分する点を$\mathrm{D}$とし,$\angle \mathrm{BAD}$を$\alpha$,$\angle \mathrm{DAC}$を$\beta$とする.このとき$\sin \alpha$及び$\sin \beta$の値を求めなさい.

\begin{zahyou*}[ul=1.5mm](0,42)(0,25)%
\tenretu*{A(35,23)n;B(5,5)w;C(35,5)e;D(20,5)s}%
{\thicklines
\Kakukigou\B\A\D<Hankei=12mm,moziiti=16mm>{$\alpha$}%
\Kakukigou<2>\D\A\C<Hankei=8mm,moziiti=12mm>{$\beta$}%
\Drawline{\A\B\C\A}%
\Drawline{\A\D}%
\put(33,5){\drawline(0,0)(0,2)}%
\put(33,7){\drawline(0,0)(2,0)}%
}
\tenretu*{D(36,23);E(2,3);F(36,3);G(10,5.5);H(20,2)}%
\emathPut\D{$\mathrm{A}$}
\emathPut\E{$\mathrm{B}$}
\emathPut\F{$\mathrm{C}$}
\emathPut\H{$\mathrm{D}$}
\end{zahyou*}

(2)半径$r (>0)$の円の円周の長さを$L$とし,面積を$S$とする.また,半径$r$の球の体積を$V$とする.このとき$x$についての$2$次方程式
\[ Vx^2+Sx-L=0 \]
の実数解がいくつあるか求めなさい.
(3)長さ$1$メートルの細いひもを$1$本だけ余すところなく用いて平面上に正三角形を$1$つ作ったとき,その正三角形の面積を求めなさい.また,同様にして正方形を$1$つ作ったとき,その正方形の面積を求めなさい.さらに,同様にして円を$1$つ作ったとき,その円の面積を求めなさい.ただし円周率を$\pi$とする.
県立広島大学 公立 県立広島大学 2013年 第3問
実数$a,\ b,\ \alpha$を定数とし,$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.このとき,
\[ \overrightarrow{d_n}=(\cos n \alpha,\ \sin n \alpha) \quad (n=0,\ 1,\ 2,\ 3,\ \cdots) \]
を座標平面上のベクトルとする.ベクトル$\overrightarrow{p_n}$を,
\[ \overrightarrow{p_1}=\overrightarrow{d_1},\quad \overrightarrow{p_{n+1}}=a \overrightarrow{p_n}+b \overrightarrow{d_{n-1}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.$\overrightarrow{p_2}=\overrightarrow{d_2}$のとき次の問いに答えよ.

(1)$a,\ b$を求めよ.
(2)すべての自然数$n$に対し,$\overrightarrow{p_n}=\overrightarrow{d_n}$となることを示せ.
岡山県立大学 公立 岡山県立大学 2013年 第4問
次の定積分を求めよ.
\[ (1) \int_2^3 \frac{x^3+2}{x-1} \, dx \qquad (2) \int_0^3 e^{\sqrt{x}} \, dx \qquad (3) \int_0^{\frac{\pi}{6}} \frac{\log \cos x}{\cos^2 x} \, dx \]
広島市立大学 公立 広島市立大学 2013年 第1問
次の問いに答えよ.

(1)次の関数の導関数を求めよ.

(i) $y=\sqrt{2-x^3}$
(ii) $y=x^2 \cos (\sqrt{2}x)$
(iii) $\displaystyle y=\frac{e^x-2}{e^x+2}$

(2)次の不定積分,定積分を求めよ.

(i) $\displaystyle \int \frac{x^2}{2-x} \, dx$

(ii) $\displaystyle \int \sqrt[3]{x^5+x^3} \, dx$

(iii) $\displaystyle \int_0^1 (1-x) \cos (\pi x) \, dx$
兵庫県立大学 公立 兵庫県立大学 2013年 第3問
関数$f(x)=e^x(\sin x-\cos x) (0 \leqq x \leqq 2\pi)$について,次の問いに答えよ.

(1)$f(x)=0$となる$x$の値を求めよ.
(2)実数$s$に対して$f(x)=s$を満たす$x$の個数を$g(s)$と表す.$g(s)$を求めよ.
(3)(2)で求めた関数$g(s)$について,$t=g(s)$のグラフをかけ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。