タグ「三角比」の検索結果

101ページ目:全1924問中1001問~1010問を表示)
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle x+\frac{1}{x}=3$のとき,$\displaystyle x^2+\frac{1}{x^2}=[ア]$であり,$x^3-5x^2+7x-2=[イ]$である.
(2)定義域を$\displaystyle 0 \leqq x \leqq \frac{\pi}{3}$とするとき,$f(x)=\cos 3x+\sin 3x$の最大値は$[ウ]$であり,最小値は$[エ]$である.
(3)ある工業製品の価格が前年比で毎年$10 \;\%$ずつ下落している.現在の価格が$1000$円であるならば,$3$年後の価格は$[オ]$円となり,価格がはじめて$200$円を下回るのは$[カ]$年後である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とし,解答欄には整数値を入れよ.
(4)曲線$y=x^3+1$と直線$\ell$が点$\mathrm{A}$で接している.また,曲線$y=x^2+ax+1 (a<0)$も$\ell$と$\mathrm{A}$で接している.このとき,$a=[キ]$であり,$\ell$の方程式は$[ク]$である.
(5)定数$a$に対して,$\displaystyle \int_a^x f(t) \, dt=x^2+x-6$であるとき,$f(x)=[ケ]$,$a=[コ]$である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$\displaystyle \frac{2}{\sqrt{6}-2}$の整数部分を$a$,小数部分を$b$とする.このとき,$b$を$\sqrt{6}$を用いて表すと$b=[ア]$である.また,$a^2-ab-b^2=[イ]$である.
(2)実数$a,\ b$に対して,$3$次方程式$ax^3+(a-2)x^2+(b-3)x-b=0$が$x=1+i$を解として持つとき,$(a,\ b)=[ウ]$であり,この方程式の実数解は$[エ]$である.
(3)$2$次方程式$\displaystyle ax^2-\frac{1}{5}x-\frac{12}{25}=0$の$2$つの解がそれぞれ$\sin \theta$,$\cos \theta$であるとき,$a$の値は$[オ]$であり,$\sin^3 \theta+\cos^3 \theta$の値は$[カ]$である.
(4)直線$x-y=1$上を動く点$\mathrm{P}$がある.$3$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(-3,\ 0)$,$\mathrm{C}(4,\ -1)$に対して,$\mathrm{PA}^2+\mathrm{PB}^2+\mathrm{PC}^2$の最小値は$[キ]$であり,このときの$\mathrm{P}$の座標は$[ク]$である.
(5)実数$a$に対して,$x$についての方程式$4^x+a \cdot 2^{x+2}+3a+1=0$が異なる$2$つの実数解を持つとき,$a$のとりうる値の範囲は$[ケ]<a<[コ]$である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)すべての実数$x$について,$2$次不等式$2x^2-6ax+3a>-4$が成り立つとき,$a$の値の範囲は$[ア]$である.また,$a>0$の範囲で,$2$次関数$y=2x^2-6ax+3a$の最小値が$-4$となるとき,その最小値をとる$x$の値は$[イ]$である.
(2)$\displaystyle \tan \theta+\frac{1}{\tan \theta}=4 (0<\theta<\frac{\pi}{2})$のとき,$\sin \theta \cos \theta=[ウ]$であり,$\sin^3 \theta+\cos^3 \theta=[エ]$である.
(3)実数$k$について,方程式$x^2+y^2-6kx+4(k+1)y+14k^2+7k+2=0$が半径$\sqrt{2}$以上の円を表すとき,$k$の値の範囲は$[オ]$である.また,その円が$y$軸に接するときの円の半径は$[カ]$である.
(4)$12^5$は$[キ]$桁の数であり,$12^n$が$12$桁の数になるときの整数$n$は$[ク]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(5)展開図が円と半径$l$の扇形からなる直円錐を考える.$l$が一定のとき,この円錐の体積を最大にするような円錐の高さを,$l$で表すと$[ケ]$であり,扇形の中心角は$[コ]$度である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)$1$より大きい実数$a$が$\displaystyle a^3+\frac{1}{a^3}=18$を満たすとき,$\displaystyle a+\frac {1}{a}$の値は$\displaystyle a+\frac {1}{a}=[ア]$であり,$\displaystyle a^2-\frac{1}{a^2}$の値は$\displaystyle a^2-\frac{1}{a^2}=[イ]$である.
(2)$0<\theta<\pi$とする.方程式$\sin \theta=\sin 2\theta$を解くと$\theta=[ウ]$であり,方程式$\sin \theta+\sin 2\theta=\sin 3\theta$を解くと$\theta=[エ]$である.
(3)$a>\sqrt{2}$のとき,$x$の不等式$\displaystyle \left( \frac{1}{a^2-1} \right)^x<a^4-2a^2+1$を解くと$[オ]$である.また,不等式$(y-1)(\log_23-\log_32^y)>0$を解くと$[カ]$である.
(4)実数$a$に対し,曲線$\displaystyle C:y=x^2+ax+\frac{3}{2}$と直線$\ell:y=2x+1$を考える.$C$と$\ell$が異なる$2$点で交わるとき,$a$のとりうる値の範囲は$[キ]$である.また,$0<x<1$において$C$と$\ell$が異なる$2$点で交わるとき,$a$のとりうる値の範囲は$[ク]$である.
南山大学 私立 南山大学 2013年 第1問
$[ ]$の中に答を入れよ.

(1)実数$a$に対して,$2$つの関数
\[ f(x)=x^2+4ax+8,\quad g(x)=-x^2+(2a-2)x-10 \]
を考える.このとき,$g(x) \geqq f(x)$となる$x$が存在するような$a$の値の範囲は$[ア]$である.また,$f(x)$の最小値が$g(x)$の最大値より大きくなるような$a$の値の範囲は$[イ]$である.
(2)$0 \leqq \theta<2\pi$のとき,$x=\sin \theta+\cos \theta$のとりうる値の範囲は$[ウ]$であり,$y=\sin 2\theta+2(\sin \theta+\cos \theta)$のとりうる値の範囲は$[エ]$である.
(3)以下の$4$つの数のうち,$1$番大きな数は$[オ]$であり,$1$番小さな数は$[カ]$である.
\[ 7^{777},\quad 10^{7 \log_{10}7},\quad 7^{(7^7)},\quad 7777777 \]
(4)$r$を正の実数とする.円$x^2+(y-1)^2=r^2$と曲線$y=x^2$が$x>0$の範囲に異なる$2$つの交点$\mathrm{P}$,$\mathrm{Q}$をもつような$r$の値の範囲は$[キ]$である.さらに,この$r$の範囲で$\displaystyle \mathrm{PQ}=\frac{\sqrt{5}}{2}$が成り立つ$r$の値は$r=[ク]$である.
昭和大学 私立 昭和大学 2013年 第1問
以下の各問に答えよ.

(1)$6x^2-2y^2+xy-x+4y-2$を因数分解せよ.
(2)方程式$x^2-x=|x-2|+2$を解け.
(3)$x=3+\sqrt{2},\ y=3-\sqrt{2}$のとき,
$(ⅰ)$ $x^2+y^2$, \quad $(ⅱ)$ $x^3+y^3$, \quad $(ⅲ)$ $x^3-y^3$
の値をそれぞれ求めよ.
(4)$\triangle \mathrm{ABC}$において,$\sin A:\sin B:\sin C=9:7:5$とする.$\sin A$の値を求めよ.
昭和大学 私立 昭和大学 2013年 第4問
関数$f(x)=4(\sin x-\cos x)^3-3 \sin 2x (0 \leqq x \leqq \pi)$がある.以下の各問に答えよ.

(1)$t=\sin x-\cos x$とおく.$f(x)$を$t$の式で表せ.
(2)(1)の$t$のとり得る値の範囲を求めよ.
(3)$f(x)$の最大値とそのときの$x$の値を求めよ.
(4)$f(x)$の最小値とそのときの$x$の値を求めよ.
甲南大学 私立 甲南大学 2013年 第2問
座標平面上に,$2$つの円$C_1:x^2+y^2=1$,$C_2:(x-2)^2+(y-1)^2=4$があり,$C_1$と$C_2$の共通接線を$n_1,\ n_2$(ただし$n_1$の傾きより$n_2$の傾きの方が大きい)とする.また,$C_1$と$C_2$の中心を結ぶ直線を$\ell$とし,$C_1$と$C_2$の$2$つの交点を結ぶ直線を$m$とする.このとき,以下の問いに答えよ.

(1)直線$\ell$の方程式,および$\ell$と$n_1$の交点の座標を求めよ.
(2)直線$n_1$と直線$\ell$とのなす角を$\displaystyle \alpha \left( \text{ただし} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$とし,$\tan \alpha$および$\tan 2\alpha$の値を求めよ.
(3)直線$n_2$の方程式を求めよ.
(4)直線$m$の方程式を求めよ.
(5)$3$つの直線$n_1,\ n_2,\ m$で囲まれた三角形の面積を求めよ.
昭和大学 私立 昭和大学 2013年 第1問
次の各問に答えよ.

(1)空間に点$\mathrm{P}(-4,\ -6,\ 3)$がある.いま,$2$点$\mathrm{A}(2,\ -3,\ 0)$,$\mathrm{B}(-4,\ 0,\ 12)$を結ぶ直線上に点$\mathrm{H}$をとり,直線$\mathrm{PH}$が直線$\mathrm{AB}$と垂直になるようにする.点$\mathrm{H}$の座標を求めよ.
(2)次の$(ⅰ),\ (ⅱ)$に答えよ.

(i) $\displaystyle \tan \frac{\theta}{2}=t$とおく.$\sin \theta$を$t$を用いて表せ.
(ii) $\displaystyle \sin \theta+\cos \theta=-\frac{1}{5} (-\pi<\theta<\pi)$とする.$\displaystyle \tan \frac{\theta}{2}$の値を求めよ.

(3)$1$から$n$までの番号が$1$つずつ書かれた$n$枚の同じ形のカードがある.ただし,$n$は$2$以上の整数である.この$n$枚のカードから,元に戻さずに$1$枚ずつ$2$回無作為に抜き出すとする.$2$回目に抜き出したカードの番号が$1$回目の番号より大きければ,$2$回目のカードの番号を得点とする.そうでなければ得点は$0$とする.次の問に答えよ.

(i) $m$は$1 \leqq m \leqq n$を満たす整数とする.$2$回目のカードの番号が$m$となる確率を求めよ.
(ii) $m$は$(ⅰ)$と同じとする.得点が$m$となる確率を求めよ.
(iii) 得点が$0$となる確率を求めよ.
\mon[$\tokeishi$] 得点の期待値を求めよ.
名城大学 私立 名城大学 2013年 第1問
次の$[ ]$に適切な答えを入れよ.

(1)$\displaystyle x+y=6,\ \frac{1}{x}+\frac{1}{y}=\frac{3}{4}$のとき,$(x-2)(y-2)=[ア]$であり,$x^2+y^2=[イ]$である.
(2)$32$の正の約数の数は$[ウ]$個,$288$の正の約数の数は$[エ]$個である.
(3)$\displaystyle \cos \theta-\sin \theta=\frac{1}{2} (0<\theta<\frac{\pi}{4})$のとき,$\sin 2\theta=[オ]$であり,$\sin 4\theta=[カ]$である.
(4)$\log_{10}2=0.3010,\ \log_{10}3=0.4771$とするとき,$2^{50}$は$[キ]$桁,$3^{80}$は$[ク]$桁の整数である.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。