タグ「三角形」の検索結果

97ページ目:全1576問中961問~970問を表示)
福島県立医科大学 公立 福島県立医科大学 2013年 第2問
一辺の長さが$8$である正四面体$\mathrm{OABC}$の辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上に点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$があって,$\mathrm{AD}=\mathrm{OE}=\mathrm{OF}=5$を満たしている.$\triangle \mathrm{DEF}$の重心$\mathrm{G}$を通り$\triangle \mathrm{DEF}$を含む平面に垂直な直線が,$\triangle \mathrm{ABC}$を含む平面と交わる点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$として,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(3)四面体$\mathrm{DEFH}$の体積を求めよ.
尾道市立大学 公立 尾道市立大学 2013年 第2問
$\triangle \mathrm{ABC}$において
\[ \frac{2 \sqrt{3}}{\sin A}=\frac{2 \sqrt{2}}{\sin B}=\frac{\sqrt{2}+\sqrt{6}}{\sin C} \]
が成り立っているとする.このとき,それぞれ次の問いに答えなさい.

(1)$\cos A$の値を求めなさい.
(2)$\triangle \mathrm{ABC}$の面積が$2 \sqrt{3}-2$であるとき,$a$の値を求めなさい.
(3)$C$の値を求めなさい.
京都大学 国立 京都大学 2012年 第2問
正四面体$\mathrm{OABC}$において,点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上にとる.ただし$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は四面体$\mathrm{OABC}$の頂点とは異なるとする.$\triangle \mathrm{PQR}$が正三角形ならば,$3$辺$\mathrm{PQ}$,$\mathrm{QR}$,$\mathrm{RP}$はそれぞれ$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に平行であることを証明せよ.
京都大学 国立 京都大学 2012年 第4問
次の命題(p),(q)のそれぞれについて,正しいかどうか答えよ.正しければ証明し,正しくなければ反例を挙げて正しくないことを説明せよ.

\mon[(p)] 正$n$角形の頂点から$3$点を選んで内角の$1$つが$60^\circ$である三角形を作ることができるならば,$n$は$3$の倍数である.
\mon[(q)] $\triangle \mathrm{ABC}$と$\triangle \mathrm{A}^\prime \mathrm{B}^\prime \mathrm{C}^\prime$において,$\mathrm{AB}=\mathrm{A}^\prime \mathrm{B}^\prime$,$\mathrm{BC}=\mathrm{B}^\prime \mathrm{C}^\prime$,$\angle \mathrm{A}=\angle \mathrm{A}^\prime$ならば,これら$2$つの三角形は合同である.
京都大学 国立 京都大学 2012年 第2問
正四面体$\mathrm{OABC}$において.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$上にとる.ただし$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$は四面体$\mathrm{OABC}$の頂点とは異なるとする.$\triangle \mathrm{PQR}$が正三角形ならば,3辺$\mathrm{PQ}$,$\mathrm{QR}$,$\mathrm{RP}$はそれぞれ3辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に平行であることを証明せよ.
京都大学 国立 京都大学 2012年 第5問
次の命題(p),(q)のそれぞれについて,正しいかどうか答えよ.正しければ証明し,正しくなければ反例を挙げて正しくないことを説明せよ.

\mon[(p)] 正$n$角形の頂点から$3$点を選んで内角の$1$コが$60^\circ$である三角形を作ることができるならば,$n$は$3$の倍数である.
\mon[(q)] $\triangle \mathrm{ABC}$と$\triangle \mathrm{ABD}$において,$\mathrm{AC}<\mathrm{AD}$かつ$\mathrm{BC}<\mathrm{BD}$ならば.$\angle \mathrm{C} > \angle \mathrm{D}$である.
北海道大学 国立 北海道大学 2012年 第1問
$m>0$,$n>0$,$0<x<1$とする.$\triangle \mathrm{OAB}$の辺$\mathrm{OA}$を$m:n$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$n:m$に内分する点を$\mathrm{Q}$とする.また,線分$\mathrm{AQ}$を$1:x$に外分する点を$\mathrm{S}$,線分$\mathrm{BP}$を$1:x$に外分する点を$\mathrm{T}$とする.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{OS}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$m,\ n,\ x$で表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{S}$,$\mathrm{T}$が一直線上にあるとき,$x$を$m,\ n$で表せ.
一橋大学 国立 一橋大学 2012年 第1問
$1$つの角が$120^\circ$の三角形がある.この三角形の$3$辺の長さ$x,\ y,\ z$は$x<y<z$を満たす整数である.

(1)$x+y-z=2$を満たす$x,\ y,\ z$の組をすべて求めよ.
(2)$x+y-z=3$を満たす$x,\ y,\ z$の組をすべて求めよ.
(3)$a,\ b$を$0$以上の整数とする.$x+y-z=2^a\,3^b$を満たす$x,\ y,\ z$の組の個数を$a$と$b$の式で表せ.
岡山大学 国立 岡山大学 2012年 第2問
正$n$角形の頂点を$\mathrm{A}_0$,$\mathrm{A}_1$,$\cdots$,$\mathrm{A}_{n-1}$とする.頂点$\mathrm{A}_1$,$\mathrm{A}_2$,$\cdots$,$\mathrm{A}_{n-1}$から$2$点をとり,それらと$\mathrm{A}_0$を頂点とする三角形を作る.このようにして得られる三角形の総数を$a_n$,そのうちの二等辺三角形の総数を$b_n$とする.ただし正三角形は二等辺三角形とみなす.このとき以下の問いに答えよ.

(1)$a_6$および$b_6$を求めよ.
(2)整数$m \geqq 3$に対し,$S=\displaystyle\sum_{k=3}^m a_k$を求めよ.
(3)$b_9$を求めよ.
九州大学 国立 九州大学 2012年 第1問
原点を$\mathrm{O}$とする座標空間に,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 0,\ 2)$,$\mathrm{C}(-2,\ 1,\ 3)$がある.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$は$\displaystyle\frac{\pi}{2}$より大きいことを示せ.
(2)点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線と直線$\mathrm{BC}$との交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めよ.
(3)$\triangle \mathrm{OAH}$の面積を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。