タグ「三角形」の検索結果

96ページ目:全1576問中951問~960問を表示)
島根県立大学 公立 島根県立大学 2013年 第1問
次の問いに答えよ.

(1)曲線$y=2x^3-ax^2+3bx$上の点$(-1,\ 4)$における接線が,直線$2013x-671y+2013=0$と平行になるとき,$a$と$b$の値を求めよ.
(2)$\mathrm{SUCCESS}$の$7$文字をすべて使ってできる順列のうち,最初の文字と最後の文字がともに$\mathrm{C}$となる確率を分数で答えよ.
(3)$(5x-y-2z)(25x^2+5xy+y^2-2yz+4z^2+10zx)$の展開式において,$xyz$の係数を求めよ.
(4)円$x^2+2x+y^2-3=0$上を動く点$\mathrm{P}$と,$2$点$\mathrm{A}(3,\ 1)$,$\mathrm{B}(1,\ -4)$を$3$つの頂点とする三角形$\mathrm{ABP}$の重心$\mathrm{G}$の軌跡は,中心が$(a,\ b)$,半径$r$の円となる.このとき,$a,\ b,\ r$の値を求めよ.
島根県立大学 公立 島根県立大学 2013年 第2問
原点$\mathrm{O}$を起点に$\mathrm{XY}$座標軸上を次の法則に従って動く$2$つの点$\mathrm{A}$,$\mathrm{B}$がある.コインを投げて表が出れば点$\mathrm{A}$は$\mathrm{X}$軸上を$+1$だけ動き,点$\mathrm{B}$はその場にとどまる.一方,裏が出れば点$\mathrm{A}$はその場にとどまり,点$\mathrm{B}$は$\mathrm{Y}$軸上を$+1$だけ動く.次の問いに答えよ.

(1)$6$回コインを投げたとき,点$\mathrm{A}$が$(6,\ 0)$の位置に到達する確率を求めよ.
(2)$4$回コインを投げたとき,三角形$\mathrm{OAB}$の面積が$\displaystyle \frac{3}{2}$になる確率を求めよ.
(3)$6$回コインを投げたときの三角形$\mathrm{OAB}$の面積の期待値を求めよ.
鳥取環境大学 公立 鳥取環境大学 2013年 第5問
以下の問に答えよ.

(1)次の$(ⅰ)$~$(ⅲ)$の文章が命題であれば真偽を答えよ.また真の場合は理由を示し,偽の場合は反例を示せ.命題でない場合は「命題でない」と答えよ.

(i) $x$が整数ならば$x^2 \geqq 0$である.
(ii) $n$が$2$以上の整数であるとき$2^n-1$はすべて素数である.
(iii) 数学は美しい.

(2)次の$(ⅰ)$~$\tokeigo$の$[ ]$の中に,必要条件であるが十分条件でない,十分条件であるが必要条件でない,必要十分条件である,必要条件でも十分条件でもない,のいずれが当てはまるか答えよ.

(i) $x$が偶数であることは,$x$が整数であるための$[ ]$.
(ii) 三角形$\mathrm{ABC}$のどれかひとつの辺の長さの$2$乗がのこりの$2$辺の長さの$2$乗の和に等しいことは,三角形$\mathrm{ABC}$が直角三角形であるための$[ ]$.
(iii) $x,\ y$がともに有理数のとき,$y>2x^2$であることは,$y>x^2-2x-2$であるための$[ ]$.
\mon[$\tokeishi$] 四角形$\mathrm{ABCD}$の内角が$4$つとも$90^\circ$であることは,四角形$\mathrm{ABCD}$が正方形であるための$[ ]$.
\mon[$\tokeigo$] 四角形$\mathrm{ABCD}$の辺の長さがすべて等しいことは,四角形$\mathrm{ABCD}$が長方形であるための$[ ]$.

(3)次の命題(ア),(イ)の逆,裏,対偶をそれぞれ書け.また,元の命題,逆,裏,対偶の真偽をそれぞれ答えよ.

\mon[(ア)] $\sqrt{n}$が有理数ならば$n$は有理数である.
\mon[(イ)] $n$を整数とする.$n$が奇数ならば$n^2$は奇数である.
岐阜薬科大学 公立 岐阜薬科大学 2013年 第3問
$xy$平面上に$7$点$\mathrm{A}(-4,\ 1)$,$\mathrm{B}(-5,\ 0)$,$\mathrm{C}(-3,\ 0)$,$\mathrm{D}(-2,\ 1)$,$\mathrm{E}(0,\ 2)$,$\mathrm{F}(0,\ 0)$,$\mathrm{G}(2,\ 0)$がある.四角形$\mathrm{ABCD}$は右へ,三角形$\mathrm{EFG}$は左へ,それぞれ$x$軸に平行に毎秒$0.5$の速さで移動する.移動開始から$t$秒後の状況について,次の問いに答えよ.

(1)点$\mathrm{F}$が$t_1$秒後に点$\mathrm{C}$と,$t_2$秒後に点$\mathrm{B}$と一致した.$t_1$と$t_2$の値を求めよ.
(2)$t_1<t<t_2$とする.このとき,四角形$\mathrm{ABCD}$と三角形$\mathrm{EFG}$の重なる部分の面積$S$を$t$を用いて表し,$S$の最大値を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2013年 第6問
空間内に$3$点$\mathrm{P}(t,\ 0,\ 2t \sqrt{1-t^2})$,$\mathrm{Q}(t,\ \sqrt{1-t^2},\ 0)$,$\mathrm{R}(t,\ -\sqrt{1-t^2},\ 0)$を考える.$t$が$0$から$1$まで動くとき,三角形$\mathrm{PQR}$が通過してできる立体を$K$とする.

(1)三角形$\mathrm{PQR}$の面積$S$を$t$を用いて表せ.
(2)立体$K$の体積$V_1$を求めよ.
(3)立体$K$を$x$軸のまわりに$1$回転してできる立体の体積$V_2$を求めよ.
北九州市立大学 公立 北九州市立大学 2013年 第3問
三角形$\mathrm{ABC}$は一辺の長さが$3$の正三角形であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{CA}$を$1:1$に内分する点を$\mathrm{E}$,$\mathrm{AD}$と$\mathrm{BE}$の交点を$\mathrm{F}$,$\angle \mathrm{BAD}=\theta$とおく.以下の問いに答えよ.

(1)$\mathrm{AD}$の長さを求めよ.
(2)$\sin \theta$と$\cos \theta$の値を求めよ.
(3)$\sin \angle \mathrm{AFB}$を求めよ.
(4)$\mathrm{BF}$の長さを求めよ.
北九州市立大学 公立 北九州市立大学 2013年 第2問
曲線$C:y=|x(x-2)|$と直線$\ell:y=kx$($k$は定数)が原点$\mathrm{O}$以外に$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.ただし,点$\mathrm{B}$の$x$座標は点$\mathrm{A}$の$x$座標よりも大きいとする.また,点$\mathrm{B}$を通り,点$\mathrm{B}$とも原点$\mathrm{O}$とも異なる点$\mathrm{E}$において曲線$C$と接する直線を$m$とする.以下の問いに答えよ.

(1)定数$k$の値の範囲を求めよ.
(2)直線$m$と$y$軸との交点を$\mathrm{F}$とする.三角形$\mathrm{FOE}$は曲線$C$によって二つの図形に分割されている.それらの二つの図形の面積の比を求めよ.
(3)$k=1$のとき,点$\mathrm{E}$の座標を求めよ.
秋田県立大学 公立 秋田県立大学 2013年 第3問
$a$を正の定数とし,$f(x)=ae^{-ax}$とする.ただし,$e$を自然対数の底とする.原点を$\mathrm{O}$とし,曲線$y=f(x)$上の点$\mathrm{P}(s,\ f(s))$における接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とするとき,以下の設問に答えよ.各設問とも,解答とともに導出過程も記述せよ.

(1)接線$\ell$の方程式と$2$点$\mathrm{Q}$,$\mathrm{R}$の座標を求めよ.
(2)曲線$y=f(x)$上の点$(1,\ f(1))$における接線と$x$軸,および直線$x=1$で囲まれた部分の面積を$S_1$とする.また,曲線$y=f(x)$と$x$軸,および$2$直線$x=1$,$x=t$で囲まれた部分の面積を$S_2$とする.ただし,$t>1$とする.このとき,$\displaystyle \lim_{t \to \infty} \frac{S_2}{S_1}$を求めよ.
(3)$s$の値が$s \geqq 0$の範囲で変化するとき,三角形$\mathrm{ROQ}$の面積$T(s)$の最大値とそのときの$s$の値を求めよ.
奈良県立医科大学 公立 奈良県立医科大学 2013年 第6問
$\triangle \mathrm{ABC}$の内心を$\mathrm{I}$とし,$\mathrm{AI}$の延長が外接円と交わる点を$\mathrm{D}$とする.$\mathrm{AB}$の長さが$3$,$\mathrm{AC}$の長さが$4$,$\angle \mathrm{BAC}$の大きさは${60}^\circ$である.このとき,$\mathrm{DI}$の長さを求めよ.
(図は省略)
福島県立医科大学 公立 福島県立医科大学 2013年 第1問
以下の各問いに答えよ.

(1)座標平面上の直線$x+2y=6$上にあって,点$(2,\ -3)$との距離が最小になる点の座標を求めよ.
(2)座標平面上の曲線$C:x^2+xy+y^2=3$について,以下の問いに答えよ.

(i) 原点のまわりの${45}^\circ$の回転移動によって,$C$上の各点が移る曲線の方程式を求めよ.
(ii) 曲線$C$で囲まれた図形のうち,$y \geqq 0$の領域に含まれる部分の面積を求めよ.

(3)座標平面上において,曲線$C_1:y=x \log x (x \geqq 1)$と放物線$C_2:y=ax^2$がある点$\mathrm{P}$を共有し,$\mathrm{P}$において共通の接線$\ell$を持つものとする.

(i) $a$の値を求めよ.
(ii) $C_1$,$C_2$および$x$軸によって囲まれた図形の面積を$S_1$とし,$C_1$,$\ell$および$x$軸によって囲まれた図形の面積を$S_2$とする.$S_1,\ S_2$の値を求めよ.

(4)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$と$\angle \mathrm{B}$の大きさをそれぞれ$A$,$B$で表し,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の対辺の長さをそれぞれ$a,\ b,\ c$で表す.$\displaystyle \tan \theta=\frac{3}{4}$になる$\displaystyle \theta \left( -\frac{\pi}{2}<\theta<\frac{\pi}{2} \right)$について,$\displaystyle \frac{a}{c} \cos (B-\theta)+\frac{b}{c} \cos (A+\theta)$の値を求めよ.
(5)$n$は自然数とする.導関数の定義にしたがって,関数$f(x)=x^n$の導関数を求めよ.
(6)$n$は$2$以上の自然数とする.$\displaystyle \frac{1}{2^n}$は,小数第$(n-1)$位が$2$,小数第$n$位が$5$である小数第$n$位までの有限小数で表わされることを示せ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。