タグ「三角形」の検索結果

92ページ目:全1576問中911問~920問を表示)
成城大学 私立 成城大学 2013年 第2問
円に内接する三角形$\mathrm{ABC}$があり,$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とする($a>b$,$b<c$).下図のように,円周上に$\mathrm{D}$を,$\angle \mathrm{DBA}=\angle \mathrm{ABC}$となるようにとり,$\mathrm{BD}$を延長した直線と$\mathrm{CA}$を延長した直線が交わる点を$\mathrm{P}$とする.$a,\ b,\ c$を用いた式で空欄$[ア]$~$[コ]$を埋めよ.

$\mathrm{DP}$上に点$\mathrm{Q}$を$\angle \mathrm{DQA}=\angle \mathrm{BAC}$となるようにとる.四角形$\mathrm{ADBC}$は円に内接しているので,$\angle \mathrm{BDA}$と$\angle \mathrm{BCA}$の和は${180}^\circ$であるから,$\angle \mathrm{QDA}=\angle \mathrm{BCA}$であり,$\triangle \mathrm{QAD}$と$\triangle \mathrm{ABC}$は相似である.また,$\mathrm{AD}=[ア]$だから,$\mathrm{QD}=[イ]$である.
$\angle \mathrm{BQA}=\angle \mathrm{BAC}$,$\angle \mathrm{QBA}=\angle \mathrm{ABC}$であるから,$\triangle \mathrm{QBA}$と$\triangle \mathrm{ABC}$は相似であり,よって$\mathrm{QB}=[ウ]$となり,$\mathrm{BD}=\mathrm{QB}-\mathrm{QD}$だから,$\mathrm{BD}=[エ]$となる.
また,$\angle \mathrm{QDA}=\angle \mathrm{BCA}$であり,$\angle \mathrm{P}$は共通より,$\triangle \mathrm{PAD}$と$\triangle \mathrm{PBC}$は相似であるから,$\mathrm{DP}:\mathrm{CP}=[オ]:[カ]$となる.$\mathrm{CP}=\mathrm{AP}+[キ]$より,$\mathrm{DP}=[ク] \mathrm{AP}+[ケ]$となる.方べきの定理より,$\mathrm{DP} \cdot \mathrm{BP}=\mathrm{AP} \cdot \mathrm{CP}$であり,これを$\mathrm{AP}$について解くと$\mathrm{AP}=[コ]$となる.
(図は省略)
東京女子大学 私立 東京女子大学 2013年 第7問
座標平面において点$\displaystyle \mathrm{A}_n \left( 1,\ \frac{1}{n} \right)$,$\displaystyle \mathrm{B} \left( 1-\frac{1}{n},\ 0 \right)$および$\mathrm{O}(0,\ 0)$を頂点とする三角形$\mathrm{OA}_n \mathrm{B}_n$の外接円の半径を$R_n$とおく.ただし$n$は$2$以上の整数とする.

(1)$R_n$を$n$の式で表せ
(2)$\displaystyle \lim_{n \to \infty} R_n$を求めよ.
青山学院大学 私立 青山学院大学 2013年 第3問
$\mathrm{AB}=\mathrm{AC}=1$,$\displaystyle \angle \mathrm{BAC}=\frac{\pi}{2}$を満たす直角二等辺三角形$\mathrm{ABC}$について,辺$\mathrm{AC}$上に点$\mathrm{D}$をとり,辺$\mathrm{AB}$と平行で点$\mathrm{D}$を通る直線を$\ell$とする.$\mathrm{AD}=t$とし,$\displaystyle 0<t \leqq \frac{1}{2}$のとき,三角形$\mathrm{ABC}$を直線$\ell$のまわりに$1$回転させてできる回転体の体積を$V(t)$とする.

(1)$V(t)$を$t$を用いて表せ.
(2)$t$が$\displaystyle 0<t \leqq \frac{1}{2}$の範囲を動くとき,$V(t)$の最小値を求めよ.
早稲田大学 私立 早稲田大学 2013年 第4問
三角形$\mathrm{OAB}$において$\mathrm{OA}=5$,$\mathrm{OB}=6$,$\mathrm{AB}=7$であり,点$\mathrm{P}$は
\[ 3 \overrightarrow{\mathrm{OA}}-15 \overrightarrow{\mathrm{OB}}+4 \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{0}} \]
を満たす点とする.直線$\mathrm{AB}$と直線$\mathrm{OP}$の交点を$\mathrm{Q}$とすると
\[ \overrightarrow{\mathrm{OP}}=[ニ] \overrightarrow{\mathrm{OQ}},\quad \overrightarrow{\mathrm{AQ}}=\frac{[ネ]}{[ヌ]} \overrightarrow{\mathrm{AB}} \]
である.このとき三角形$\mathrm{OAP}$の面積は$\displaystyle \frac{[ノ] \sqrt{[ハ]}}{2}$である.
早稲田大学 私立 早稲田大学 2013年 第2問
面積$1$の正三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$の中点を$\mathrm{M}$とする.正の実数$t$に対し,線分$\mathrm{AM}$を$1:t$に内分する点を$\mathrm{P}$とし,さらに直線$\mathrm{BP}$と辺$\mathrm{AC}$の交点を$\mathrm{Q}$,直線$\mathrm{CP}$と辺$\mathrm{AB}$の交点を$\mathrm{R}$とする.次の設問に答えよ.

(1)$\displaystyle \frac{\mathrm{QC}}{\mathrm{AQ}}$を$t$を用いて表せ.
(2)三角形$\mathrm{MQR}$の面積が最大となる$t$の値と,そのときの面積を求めよ.
早稲田大学 私立 早稲田大学 2013年 第2問
中心$\mathrm{A}(1,\ 1)$,半径$1$の円を$C$とする.原点を通り円$C$と異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わる直線を$\ell$とする.$\mathrm{P}$,$\mathrm{Q}$における円$C$の$2$本の接線が直交するとき,次の問に答えよ.

(1)$\triangle \mathrm{APQ}$の面積$S$を求めよ.
(2)直線$\ell$の傾きを求めよ.
(3)$2$本の接線の交点$\mathrm{R}$の座標を求めよ.
早稲田大学 私立 早稲田大学 2013年 第3問
図のように点$\mathrm{O}$を中心とする円の円周を$12$等分する$12$個の点をとり,そのうちの$1$つを点$\mathrm{A}$とする.さらに点$\mathrm{P}$,$\mathrm{Q}$を,$3$点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$が互いに異なるように選ぶ.ただし点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$はこの順に時計の針の回転と逆の向きに並ぶものとする.このとき,次の各問に答えよ.
(図は省略)

(1)$\triangle \mathrm{APQ}$が直角三角形になる確率を求めよ.
(2)$\triangle \mathrm{APQ}$が二等辺三角形になる確率を求めよ.
(3)点$\mathrm{O}$が$\triangle \mathrm{APQ}$の内部または周上にある確率を求めよ.
(図は省略)
立教大学 私立 立教大学 2013年 第2問
座標平面上に放物線$C:y=x^2+(2-a)x+3-a$がある.放物線$C$上の点$\mathrm{P}(-1,\ 2)$における接線を$\ell$とする.このとき,次の問に答えよ.

(1)直線$\ell$の方程式を$a$を用いて表せ.
(2)直線$\ell$が$x$軸の正の部分と交わり,かつ$y$軸の正の部分と交わるような$a$の値の範囲を求めよ.
(3)$a$の値が$(2)$で求めた範囲にあるとする.$x$軸,$y$軸,直線$\ell$で囲まれる三角形の面積を$S_1$とし,また,$y$軸,直線$\ell$,放物線$C$で囲まれる図形の面積を$S_2$とする.$S_1=3S_2$となるとき,$a$の値を求めよ.
立教大学 私立 立教大学 2013年 第2問
図のように,座標平面上に,$x$座標が$0,\ 1,\ 2$,$y$座標が$0,\ 1,\ 2$である$9$個の点がある.これらの$9$点から$1$点を選ぶ試行を$3$回くり返すことで$3$点を選ぶ.ただし,どの点を選ぶ確率も等しいとする.このとき,次の問に答えよ.

(1)$3$点とも原点$\mathrm{O}$になる確率を求めよ.
(2)$3$点が同一の点になる確率を求めよ.
(3)$3$点のうち$2$点だけが同一の点になる確率を求めよ.
(4)$3$点とも異なる点であり,かつ一直線上に並ぶ確率を求めよ.
(5)$3$点を頂点とする三角形ができる確率を求めよ.
(図は省略)
早稲田大学 私立 早稲田大学 2013年 第3問
$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,図のように$\mathrm{AW}=\mathrm{BX}=\mathrm{CY}=\mathrm{DZ}$となる点$\mathrm{W}$,$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$をとる.四角形$\mathrm{WXYZ}$に内接する円を$C_0$とし,$\triangle \mathrm{AWZ}$,$\triangle \mathrm{BXW}$,$\triangle \mathrm{CYX}$,$\triangle \mathrm{DZY}$に内接する円をそれぞれ$C_1$,$C_2$,$C_3$,$C_4$とする.$\mathrm{AW}=x$,$\mathrm{ZW}=a$とおくとき
\[ a^2=[セ]x^2+[ソ]x+1 \quad (0<x<1) \]
となる.円$C_0$,$C_1$,$C_2$,$C_3$,$C_4$の面積の総和を$S$とすると
\[ S=\frac{\pi}{4} \left( [タ]a^2+[チ]a+[ツ] \right) \]
となり,$\displaystyle a=\frac{[ト]}{[テ]}$のとき,$S$は最小値$\displaystyle \frac{\pi}{[ナ]}$をとる.
(図は省略)
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。