タグ「三角形」の検索結果

86ページ目:全1576問中851問~860問を表示)
西南学院大学 私立 西南学院大学 2013年 第2問
点$(x,\ y)$が,$3$点$\mathrm{A}(0,\ 1)$,$\mathrm{B}(5,\ 0)$,$\mathrm{C}(2,\ 4)$を頂点とする三角形$\mathrm{ABC}$の内部および周上を動くとき,以下の問に答えよ.

(1)$3x+y$の最大値は$[ケコ]$となる.
(2)$x^2-2x+y^2+2y+2$の最小値は$\displaystyle \frac{[サシ]}{[スセ]}$となり,そのときの$x$の値は$\displaystyle \frac{[ソタ]}{[チツ]}$となる.
西南学院大学 私立 西南学院大学 2013年 第4問
三角形$\mathrm{ABC}$について$\mathrm{AB}=7$,$\mathrm{BC}=5$,$\mathrm{CA}=3 \sqrt{2}$である.また,三角形$\mathrm{ABC}$の外接円の中心を$\mathrm{O}$とする.このとき,以下の内積を求めよ.

(1)$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[ニヌ]$
(2)$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{BC}}=[ネノハ]$
(3)$\displaystyle \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AO}}=\frac{[ヒフ]}{[ヘ]}$
京都産業大学 私立 京都産業大学 2013年 第1問
以下の$[ ]$にあてはまる式または数値を入れよ.

(1)$2x^2+5xy-3y^2-3x+5y-2$を因数分解すると$[ア]$であり, \\
$a(b^2-c^2)+b(c^2-a^2)+c(a^2-b^2)$を因数分解すると$[イ]$である.
(2)$1$から$100$までの整数のうち,$2$の倍数全体の集合を$A$,$3$の倍数全体の集合を$B$,$5$の倍数全体の集合を$C$とする.$A \cup B$の要素の個数は$[ウ]$であり,$(A \cup B) \cap C$の要素の個数は$[エ]$である.
(3)不等式$3^{2x+1}+2 \cdot 3^x>1$を満たす$x$の値の範囲は$[オ]$である.
(4)三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$を$2:3$の比に内分する点を$\mathrm{P}$,辺$\mathrm{CA}$を$4:5$の比に内分する点を$\mathrm{Q}$,辺$\mathrm{AB}$を$[カ]$の比に内分する点を$\mathrm{R}$とするとき,$3$直線$\mathrm{AP}$,$\mathrm{BQ}$,$\mathrm{CR}$は$1$点で交わる.
愛知学院大学 私立 愛知学院大学 2013年 第4問
$\triangle \mathrm{ABC}$は鈍角三角形で$B=30^\circ$,$a=\sqrt{3}-1$,$c=3-\sqrt{3}$とする.

(1)$b$の長さを求めなさい.
(2)$\cos C$を求めなさい.
(3)$\triangle \mathrm{ABC}$の面積を求めなさい.
学習院大学 私立 学習院大学 2013年 第4問
$3$つの実数$x,\ y,\ 12-x^2$を$3$辺の長さとする三角形が描けるような点$\mathrm{P}(x,\ y)$が存在する領域を平面上に図示せよ.また,その領域の面積を求めよ.
昭和大学 私立 昭和大学 2013年 第8問
$\triangle \mathrm{ABC}$は$\angle \mathrm{ABC}=90^\circ$の直角二等辺三角形であり,辺$\mathrm{BC}$の中点を$\mathrm{D}$とする.辺$\mathrm{AC}$上に点$\mathrm{E}$,辺$\mathrm{AB}$上に点$\mathrm{F}$があり,$\mathrm{DE}=3$,$\mathrm{EF}=4$,$\angle \mathrm{DEF}=90^\circ$である.$\mathrm{E}$から$\mathrm{BC}$に下した垂線の足を$\mathrm{H}$とし,$\angle \mathrm{EDC}=\theta$,$\mathrm{BD}=x$とするとき,以下の各問に答えよ.

(1)$\angle \mathrm{AFE}$を$\theta$を用いて表せ.
(2)$\mathrm{EH}$の長さを$\sin \theta$の簡単な式で表せ.
(3)$\mathrm{CE}$の長さを$\sin \theta$の簡単な式で表せ.
(4)$\mathrm{AE}$の長さを$\sin \theta$の簡単な式で表せ.
(5)$\sin \theta$を$x$の簡単な式で表せ.
(6)$x$を求めよ.
金沢工業大学 私立 金沢工業大学 2013年 第3問
次の問いに答えよ.

(1)不等式$\sqrt{3} \cos \theta+3 \sin \theta-\sqrt{6}>0 (0 \leqq \theta<2\pi)$の解は$\displaystyle \frac{\pi}{[ア][イ]}<\theta<\frac{[ウ]}{[エ][オ]} \pi$である.

(2)$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$1:2$,辺$\mathrm{OB}$を$2:1$に内分する点をそれぞれ$\mathrm{D}$,$\mathrm{E}$とし,線分$\mathrm{AE}$と$\mathrm{BD}$の交点を$\mathrm{P}$とする.このとき,
\[ \overrightarrow{\mathrm{OD}}=\frac{[カ]}{[キ]} \overrightarrow{\mathrm{OA}},\quad \overrightarrow{\mathrm{OE}}=\frac{[ク]}{[ケ]} \overrightarrow{\mathrm{OB}},\quad \overrightarrow{\mathrm{OP}}=\frac{[コ]}{[サ]} \overrightarrow{\mathrm{OA}}+\frac{[シ]}{[サ]} \overrightarrow{\mathrm{OB}} \]
と表せる.
広島修道大学 私立 広島修道大学 2013年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とする.$\angle \mathrm{A}$の二等分線が辺$\mathrm{BC}$と交わる点を$\mathrm{D}$とし,$\theta=\angle \mathrm{BAD}$とするとき,次の問に答えよ.

(1)$\cos \theta$の値を$a,\ b,\ c$の式で表せ.

(2)$\displaystyle \mathrm{AD}=\frac{2bc}{b+c} \cos \theta$であることを示せ.

(3)$a=3,\ b=4,\ c=2$のとき,線分$\mathrm{AD}$の長さを求めよ.
広島修道大学 私立 広島修道大学 2013年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=a$,$\mathrm{CA}=b$,$\mathrm{AB}=c$とする.$\angle \mathrm{A}$の二等分線が辺$\mathrm{BC}$と交わる点を$\mathrm{D}$とし,$\theta=\angle \mathrm{BAD}$とするとき,次の問に答えよ.

(1)$\cos \theta$の値を$a,\ b,\ c$の式で表せ.

(2)$\displaystyle \mathrm{AD}=\frac{2bc}{b+c} \cos \theta$であることを示せ.

(3)$a=3,\ b=4,\ c=2$のとき,線分$\mathrm{AD}$の長さを求めよ.
神奈川大学 私立 神奈川大学 2013年 第1問
次の空欄$[ ]$を適当に補え.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AC}=7$,$\mathrm{AB}=3$,$\angle \mathrm{BAC}=120^\circ$のとき,$\mathrm{BC}=[ア]$である.
(2)方程式$3 \log_8x+\log_2(x-8)=7$を解くと,$x=[イ]$である.
(3)$3+i$をかけると$1+17i$となる複素数を,$a+bi$の形で表すと$[ウ]$である.ただし,$a,\ b$は実数,$i$は虚数単位である.
(4)$1$つのサイコロを$6$回投げて,$1$の目と$2$の目がそれぞれちょうど$2$回ずつ出る確率は$\displaystyle [エ]$である.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。