タグ「三角形」の検索結果

71ページ目:全1576問中701問~710問を表示)
上智大学 私立 上智大学 2014年 第1問
次の$[あ]$~$[お]$に当てはまるものを,下の選択肢から選べ.

(1)$\displaystyle x=-\frac{2}{3}$は$3x^2-13x-10=0$であるための$[あ]$
(2)$n$を自然数とする.$n^2$が$5$の倍数であることは,$n$が$5$の倍数であるための$[い]$
(3)$a,\ b$を自然数とする.$(a+b)^2$が奇数であることは,$ab$が偶数であるための$[う]$
(4)平面上の異なる$2$つの円$C$,$C^\prime$の半径をそれぞれ$r$,$r^\prime$とし,中心間の距離を$d$とする.ただし,$r<r^\prime$とする.このとき,$C$と$C^\prime$が共有点をもたないことは,$d>r+r^\prime$であるための$[え]$
(5)$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$の延長上に$\mathrm{CD}=4$となる点$\mathrm{D}$をとり,辺$\mathrm{AC}$上に$\mathrm{AE}=3$となる点$\mathrm{E}$をとる.このとき,辺$\mathrm{AB}$上の点$\mathrm{F}$に対して,$\mathrm{AF}=3$であることは,$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が一直線上にあるための$[お]$
選択肢:

\mon[$①$] 必要条件であるが十分条件ではない.
\mon[$②$] 十分条件であるが必要条件ではない.
\mon[$③$] 必要十分条件である.
\mon[$④$] 必要条件でも十分条件でもない.
上智大学 私立 上智大学 2014年 第2問
$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\angle \mathrm{B}={60}^\circ$の$\triangle \mathrm{ABC}$がある.

(1)$\mathrm{AC}=[ア]$,$\triangle \mathrm{ABC}$の面積は$[イ] \sqrt{[ウ]}$,$\triangle \mathrm{ABC}$の内接円の半径は$\sqrt{[エ]}$である.
(2)$\triangle \mathrm{ABC}$の外接円の半径は$\displaystyle \frac{[オ]}{[カ]} \sqrt{[キ]}$である.
(3)$\triangle \mathrm{ABC}$の外接円の点$\mathrm{B}$を含まない弧$\mathrm{AC}$上に$\mathrm{AD}=3$となる点$\mathrm{D}$をとる.このとき,$\mathrm{CD}=[ク]$である.
(4)$\displaystyle \cos \angle \mathrm{BAD}=\frac{[ケ]}{[コ]}$,$\displaystyle \mathrm{BD}=\frac{[サ]}{[シ]}$である.
(5)$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とするとき,$\displaystyle \cos \angle \mathrm{AED}=\frac{[ス]}{[セ]}$である.
東京理科大学 私立 東京理科大学 2014年 第2問
平面上に同一直線上にない$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が与えられているとし,$\triangle \mathrm{ABC}$の内部の点$\mathrm{P}$が
\[ 4 \overrightarrow{\mathrm{AP}}+7 \overrightarrow{\mathrm{BP}}+2 \overrightarrow{\mathrm{CP}}=\overrightarrow{\mathrm{0}} \]
を満たしているとする.線分$\mathrm{AP}$を延長した直線と線分$\mathrm{BC}$との交点を$\mathrm{Q}$,線分$\mathrm{BP}$を延長した直線と線分$\mathrm{AC}$との交点を$\mathrm{R}$とおく.


(1)$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{[ア]}{[イ][ウ]} \overrightarrow{\mathrm{AB}}+\frac{[エ]}{[オ][カ]} \overrightarrow{\mathrm{AC}}$である.

(2)点$\mathrm{P}$は線分$\mathrm{AQ}$を$[キ]:[ク]$に内分する点であり,点$\mathrm{Q}$は線分$\mathrm{BC}$を$[ケ]:[コ]$に内分する点である.
(3)$\triangle \mathrm{APB}$の面積を$S$,四角形$\mathrm{CQPR}$の面積を$T$とおくと,
\[ S:T=[サ]:[シ][ス] \]
である.
東京理科大学 私立 東京理科大学 2014年 第3問
$\mathrm{O}$を原点とする$xyz$空間の$x$軸上,$y$軸上,$z$軸上にそれぞれ点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$があり,$\mathrm{AB}=3$,$\mathrm{AC}=2$であるという.そのとき,$\mathrm{BC}=a$とおき,三角形$\mathrm{ABC}$の面積を$S$とおく.

(1)$a$の取りうる値の範囲は
\[ \sqrt{[ア]} \leqq a \leqq \sqrt{[イ][ウ]} \]
である.
(2)$(ⅰ)$ $\displaystyle \cos \angle \mathrm{BAC}=\frac{1}{[エ][オ]}(-a^2+[カ][キ])$である.
$(ⅱ)$ $\displaystyle S^2=\frac{1}{[ク][ケ]}(-a^4+[コ][サ]a^2-[シ][ス])$である.
(3)$\mathrm{OA}=x$とおいて,$S^2$を$x$を用いて表すと
\[ S^2=-\frac{[セ]}{[ソ]}x^4+[タ] \]
となる.
(4)$S=2 \sqrt{2}$のとき,四面体$\mathrm{OABC}$に内接する球(すなわち,中心がこの四面体の内部にあって,すべての面と$1$点のみを共有する球)の半径を$r$とおく.

(i) $\displaystyle r=\frac{\sqrt{[チ]}}{1+[ツ] \sqrt{[テ]}+\sqrt{[ト][ナ]}}$である.

(ii) $r=[ニ] \sqrt{[チ]}-[ヌ] \sqrt{[テ]}+[ネ] \sqrt{[ト][ナ]}-[ノ]$となる.
立教大学 私立 立教大学 2014年 第2問
平面上に三角形$\mathrm{OAB}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.このとき,次の問に答えよ.

(1)線分$\mathrm{AB}$の中点を$\mathrm{C}$とする.$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)線分$\mathrm{OA}$を$s:(1-s)$,線分$\mathrm{OB}$を$t:(1-t)$に内分した点をそれぞれ$\mathrm{D}$,$\mathrm{E}$とする.$\overrightarrow{\mathrm{DB}}$,$\overrightarrow{\mathrm{EA}}$を$s,\ t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.ただし,$0<s<1$,$0<t<1$とする.
(3)線分$\mathrm{DB}$と線分$\mathrm{EA}$の交点を$\mathrm{F}$とする.$\displaystyle s=\frac{1}{3},\ t=\frac{2}{3}$のとき,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(4)$(3)$で用いた$s,\ t$の値に対し,線分$\mathrm{OF}$の中点を$\mathrm{H}$,線分$\mathrm{DE}$を$k:(1-k)$に内分した点を$\mathrm{G}$とするとき,$\mathrm{H}$,$\mathrm{G}$,$\mathrm{C}$が一直線上にあるときの$k$の値を求めよ.
立教大学 私立 立教大学 2014年 第4問
$a$を正の実数とする.座標平面上に$4$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ 0)$,$\mathrm{B}(a,\ a)$,$\mathrm{C}(0,\ a)$がある.四角形$\mathrm{OABC}$の辺$\mathrm{AB}$上に点$\mathrm{P}(a,\ p)$をとり,点$\mathrm{P}$を通り$\mathrm{AC}$と平行な直線と$\mathrm{BC}$との交点を$\mathrm{Q}$とする.このとき,次の問に答えよ.

(1)三角形$\mathrm{OPQ}$の面積$S$を$a$と$p$を用いて表せ.
(2)三角形$\mathrm{OPQ}$の外接円の半径$R$を$a$と$p$を用いて表せ.
(3)三角形$\mathrm{OAP}$と三角形$\mathrm{PBQ}$の面積がともに$1$であるとき,$a-p$と$a+p$の値を求めよ.
(4)$(3)$のとき,$a$と$p$の値を求めよ.
(5)$a$と$p$が$(4)$で求めた値であるとき,三角形$\mathrm{OPQ}$の内接円の半径$r$の値を求めよ.
北里大学 私立 北里大学 2014年 第4問
辺$\mathrm{AB}$の長さが$4$,辺$\mathrm{AE}$の長さが$\sqrt{6}$の直方体$\mathrm{ABCD}$-$\mathrm{EFGH}$において,辺$\mathrm{AB}$を$1:3$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$の中点を$\mathrm{M}$,線分$\mathrm{HM}$を$2:1$に内分する点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$と線分$\mathrm{PR}$の長さが等しくなるように,辺$\mathrm{CD}$上に点$\mathrm{R}$をとる.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{e}$とする.
(図は省略)

(1)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{b}$,$\overrightarrow{d}$,$\overrightarrow{e}$を用いて表すと,$\overrightarrow{\mathrm{PQ}}=[コ] \overrightarrow{b}+[サ] \overrightarrow{d}+[シ] \overrightarrow{e}$と表される.
(2)$\overrightarrow{\mathrm{PR}}$を$\overrightarrow{b}$,$\overrightarrow{d}$を用いて表すと,$\overrightarrow{\mathrm{PR}}=[ス] \overrightarrow{b}+[セ] \overrightarrow{d}$と表される.
(3)$\triangle \mathrm{PQR}$の面積が$\sqrt{7}$であるとき,辺$\mathrm{AD}$の長さは$[ソ]$である.
北里大学 私立 北里大学 2014年 第1問
次の各文の$[ ]$にあてはまる数を求めよ.

(1)$\displaystyle 0<\alpha<\frac{\pi}{2},\ \frac{\pi}{2}<\beta<\pi,\ \cos \alpha=\frac{3}{5},\ \sin \beta=\frac{12}{13}$を満たす$2$つの角$\alpha,\ \beta$を考える.このとき,$\sin 2\alpha=[ア]$,$\tan (\alpha-\beta)=[イ]$,$\sin (2\alpha+\beta)=[ウ]$となる.
(2)整式$P(x)$を$x^2-3x+2$で割ると$12x-5$余り,$x^2-x-2$で割ると$2x+15$余る.このとき,$P(x)$を$x-1$で割った余りは$[エ]$で,$x^2-1$で割った余りは$[オ]x+[カ]$である.
(3)$1,\ 1,\ 2,\ 2,\ 3,\ 4,\ 5$の$7$個の数字すべてを横$1$列に並べるとき,並べ方は全部で$[キ]$通りである.そのうち,両端の数字が$3$と$4$となる並べ方は$[ク]$通り,$3$より左側に$1$が$2$個あるような並べ方は$[ケ]$通りである.
(4)$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{13}$,$\mathrm{CA}=4$である三角形$\mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\angle \mathrm{BAC}=\theta$とおく.このとき,$\theta$は$[コ]$度で,内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値は$[サ]$である.また,$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$,三角形$\mathrm{ABC}$の外心を$\mathrm{E}$とするとき,$\overrightarrow{\mathrm{AD}}=[シ] \overrightarrow{b}+[ス] \overrightarrow{c}$,$\overrightarrow{\mathrm{AE}}=[セ] \overrightarrow{b}+[ソ] \overrightarrow{c}$と表せる.
松山大学 私立 松山大学 2014年 第3問
次の空所$[ア]$~$[ソ]$を埋めよ.

図のような一辺が長さ$1$の正四面体$\mathrm{ABCD}$がある.
(図は省略)

(1)$\mathrm{A}$から底面$\mathrm{BCD}$に垂線$\mathrm{AH}$を下ろすとき,$\mathrm{AH}$の長さは$\displaystyle \frac{\sqrt{[ア]}}{[イ]}$となり,正四面体$\mathrm{ABCD}$の体積は$\displaystyle \frac{\sqrt{[ウ]}}{[エオ]}$である.
(2)辺$\mathrm{AB}$上に点$\mathrm{P}$,辺$\mathrm{BC}$上に点$\mathrm{Q}$を$\mathrm{BP}=\mathrm{CQ}=x$となるようにとる.四面体$\mathrm{PBQD}$の体積は$\displaystyle x=\frac{[カ]}{[キ]}$のときに最大となり,これは正四面体$\mathrm{ABCD}$の体積の$\displaystyle \frac{[ク]}{[ケ]}$倍である.
(3)$\displaystyle x=\frac{[カ]}{[キ]}$のとき,$\angle \mathrm{DPQ}=\theta$とすると,$\displaystyle \cos \theta=\frac{\sqrt{[コ]}}{[サ]}$であり,$\triangle \mathrm{DPQ}$の面積は$\displaystyle \frac{\sqrt{[シス]}}{[セソ]}$である.
日本獣医生命科学大学 私立 日本獣医生命科学大学 2014年 第2問
三角形$\mathrm{OAB}$の各頂点の座標は$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 4)$,$\mathrm{B}(-4,\ 6)$である.

(1)頂点$\mathrm{A}$を通って三角形$\mathrm{OAB}$の面積を$2$等分する直線の方程式を求めよ.
(2)三角形$\mathrm{OAB}$の重心$\mathrm{G}$の座標を求めよ.
(3)重心$\mathrm{G}$から辺$\mathrm{AB}$に引いた垂線と辺$\mathrm{AB}$の交点を$\mathrm{H}$とするとき,$\mathrm{H}$の座標を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。