タグ「三角形」の検索結果

64ページ目:全1576問中631問~640問を表示)
学習院大学 私立 学習院大学 2014年 第3問
平面上に$3$点$\mathrm{A}(0,\ a)$,$\mathrm{B}(-t,\ t^2-a)$,$\mathrm{C}(t,\ t^2-a)$があり,条件
\[ a>0,\quad 0<t \leqq \sqrt{a},\quad \triangle \mathrm{ABC} \text{は正三角形} \]
が成り立っているとする.

(1)$a$を$t$で表せ.
(2)$0<t \leqq \sqrt{3}$であることを示せ.
(3)$2$つの放物線$y=x^2-a$,$y=-x^2+a$で囲まれた部分の面積を$S$とし,$\triangle \mathrm{ABC}$の面積を$T$とする.$t$が$(2)$の範囲を動くとき,$\displaystyle \frac{S}{T}$の最小値を求めよ.
広島修道大学 私立 広島修道大学 2014年 第2問
放物線$y=-2x^2-2x+4$について,次の問いに答えよ.

(1)この放物線に点$(-1,\ 6)$から引いた$2$本の接線の方程式を求めよ.
(2)$(1)$で求めた$2$本の接線と$x$軸でつくられた三角形の面積を$S_1$とし,この放物線と$x$軸で囲まれた部分の面積を$S_2$とする.このとき,$|S_1-S_2|$の値を求めよ.
広島修道大学 私立 広島修道大学 2014年 第2問
$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(0,\ 3)$がある.このとき,次の問に答えよ.

(1)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る円の方程式を求めよ.
(2)点$\mathrm{C}$が$(1)$で求めた円の周上を動くとき,$\triangle \mathrm{ABC}$の面積が最大となるような点$\mathrm{C}$の座標を求めよ.
大阪薬科大学 私立 大阪薬科大学 2014年 第3問
次の問いに答えなさい.

辺$\mathrm{AB}$の長さが$1$の$\triangle \mathrm{OAB}$について,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$で表す.$n$を自然数とする.辺$\mathrm{AB}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$の中点を$\mathrm{X}_1$,線分$\mathrm{AX}_1$の中点を$\mathrm{X}_2$,$\cdots$,線分$\mathrm{AX}_n$の中点を$\mathrm{X}_{n+1}$,$\cdots$とする.また,$\triangle \mathrm{OAX}_1$の重心を$\mathrm{P}_1$,$\triangle \mathrm{OAX}_2$の重心を$\mathrm{P}_2$,$\cdots$,$\triangle \mathrm{OAX}_n$の重心を$\mathrm{P}_n$,$\cdots$とする.同様に線分$\mathrm{BM}$の中点を$\mathrm{Y}_1$,線分$\mathrm{BY}_1$の中点を$\mathrm{Y}_2$,$\cdots$,線分$\mathrm{BY}_n$の中点を$\mathrm{Y}_{n+1}$,$\cdots$とし,$\triangle \mathrm{OBY}_1$の重心を$\mathrm{Q}_1$,$\triangle \mathrm{OBY}_2$の重心を$\mathrm{Q}_2$,$\cdots$,$\triangle \mathrm{OBY}_n$の重心を$\mathrm{Q}_n$,$\cdots$とする.

(1)$\overrightarrow{\mathrm{OX}_1}$と$\overrightarrow{\mathrm{P}_1 \mathrm{Q}_1}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{OX}_1}=[$\mathrm{I]$}$,$\overrightarrow{\mathrm{P}_1 \mathrm{Q}_1}=[$\mathrm{J]$}$である.
(2)線分$\mathrm{AX}_n$の長さを$n$を用いて表すと,$\mathrm{AX}_n=[$\mathrm{K]$}$である.
(3)$\overrightarrow{\mathrm{P}_n \mathrm{Q}_n}$は$n,\ \overrightarrow{a},\ \overrightarrow{b}$を用いてどのように表されるかを求めなさい.
(4)線分$\mathrm{P}_n \mathrm{Q}_n$の長さに関する不等式
\[ 0.666666<\mathrm{P}_n \mathrm{Q}_n \]
を満たす最小の自然数$n$は$[$\mathrm{L]$}$である.ただし,$\log_{2}10=3.3219$とする.
広島修道大学 私立 広島修道大学 2014年 第2問
次の問に答えよ.

(1)$3$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}$,$\mathrm{C}$を頂点とする$\triangle \mathrm{ABC}$において,点$\mathrm{B}$から対辺に下ろした垂線の方程式は$x-3y+2=0$であり,点$\mathrm{C}$から対辺に下ろした垂線の方程式は$4x+2y-5=0$である.このとき,$3$直線$\mathrm{AB}$,$\mathrm{AC}$,$\mathrm{BC}$の方程式を求めよ.
(2)$a$を定数とする.関数$\displaystyle y=\frac{1}{2}x^3-\frac{15}{4}x^2+8x+5$のグラフと直線$y=2x+a$が共有点を$3$個もち,それらの$x$座標がすべて正の数となるような$a$の値の範囲を求めよ.
津田塾大学 私立 津田塾大学 2014年 第3問
$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$をそれぞれ$1:2$に内分する点を$\mathrm{A}_1$,$\mathrm{B}_1$,$\mathrm{C}_1$とする.また,$\triangle \mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1$の辺$\mathrm{B}_1 \mathrm{C}_1$,$\mathrm{C}_1 \mathrm{A}_1$,$\mathrm{A}_1 \mathrm{B}_1$をそれぞれ$1:2$に内分する点を$\mathrm{A}_2$,$\mathrm{B}_2$,$\mathrm{C}_2$とする.$\overrightarrow{b}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{AC}}$とするとき,$\overrightarrow{\mathrm{C}_2 \mathrm{A}_2}$および$\overrightarrow{\mathrm{C}_2 \mathrm{B}_2}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
早稲田大学 私立 早稲田大学 2014年 第3問
直線$4x+3y=48$,$3x-4y=0$と$y$軸のつくる三角形に内接する円の中心の座標は$\displaystyle \left( \frac{[キ]}{[ク]},\ \frac{[ケ]}{[コ]} \right)$である.
早稲田大学 私立 早稲田大学 2014年 第5問
角$A$が鈍角の三角形$\mathrm{ABC}$において$\mathrm{AB}=2$,$\mathrm{AC}=3$であり,三角形$\mathrm{ABC}$の面積は$2 \sqrt{2}$である.このとき,三角形$\mathrm{ABC}$の垂心を$\mathrm{H}$とすると
\[ \overrightarrow{\mathrm{AH}}=\frac{[ナ] \overrightarrow{\mathrm{AB}}+[ニ] \overrightarrow{\mathrm{AC}}}{[ヌ]} \]
である.
青山学院大学 私立 青山学院大学 2014年 第2問
平面上に,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\mathrm{OA}=2$,$\mathrm{OB}=3$であるような三角形$\mathrm{OAB}$がある.辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.三角形$\mathrm{ABP}$が正三角形になるように,直線$\mathrm{AB}$に関して点$\mathrm{O}$の反対側に点$\mathrm{P}$をとる.このとき,

(1)$\displaystyle \overrightarrow{\mathrm{OM}}=\frac{[$13$]}{[$14$]} \overrightarrow{\mathrm{OA}}+\frac{[$15$]}{[$16$]} \overrightarrow{\mathrm{OB}}$である.
(2)点$\mathrm{O}$から辺$\mathrm{AB}$に垂線を下ろし,辺$\mathrm{AB}$との交点を$\mathrm{H}$とすると,
\[ \overrightarrow{\mathrm{OH}}=\frac{[$17$]}{[$18$][$19$]} \overrightarrow{\mathrm{OA}}+\frac{[$20$]}{[$21$][$22$]} \overrightarrow{\mathrm{OB}} \]
である.
(3)$\displaystyle \mathrm{MP}=\frac{\sqrt{[$23$][$24$]}}{[$25$]}$で,$\overrightarrow{\mathrm{MP}}$と$\overrightarrow{\mathrm{OH}}$とが平行であることに注意すると,
\[ \overrightarrow{\mathrm{MP}}=\frac{[$26$] \sqrt{[$27$]}}{[$28$]} \overrightarrow{\mathrm{OA}}+\frac{\sqrt{[$29$]}}{[$30$]} \overrightarrow{\mathrm{OB}} \]
である.
青山学院大学 私立 青山学院大学 2014年 第3問
下図のように,点$\mathrm{O}$を中心とし,半径が$1$で中心角が$\displaystyle \frac{2}{3} \pi$の扇形$\mathrm{OAB}$がある.$\theta$を$\displaystyle 0<\theta<\frac{\pi}{3}$を満たす角として,弧$\mathrm{AB}$上に,$\angle \mathrm{AOP}=\theta$,$\angle \mathrm{BOQ}=\theta$を満たす点$\mathrm{P}$,$\mathrm{Q}$をとる.また,点$\mathrm{P}$から線分$\mathrm{OA}$に垂線を下ろし,線分$\mathrm{OA}$との交点を$\mathrm{R}$とする.点$\mathrm{Q}$から線分$\mathrm{OB}$に垂線を下ろし,線分$\mathrm{OB}$との交点を$\mathrm{S}$とする.このとき,以下の問に答えよ.
(図は省略)

(1)三角形$\mathrm{OPR}$の面積を$\theta$を用いて表せ.
(2)三角形$\mathrm{OPQ}$の面積を$\theta$を用いて表せ.
(3)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{3}$の範囲を動くとき,五角形$\mathrm{ORPQS}$の面積の最大値を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。