タグ「三角形」の検索結果

56ページ目:全1576問中551問~560問を表示)
山形大学 国立 山形大学 2014年 第1問
$-a<x<a$で定義された曲線$C:y=x \sqrt{a^2-x^2}$がある.ただし$a$は正の定数とする.以下の問いに答えよ.

(1)$y$の増減を調べ,曲線$C$の概形をかけ.
(2)曲線$C$と直線$\displaystyle L:y=\frac{1}{\sqrt{3}}x$が$3$つの共有点を持つような定数$a$の値の範囲を求めよ.またそのときの共有点の$x$座標をすべて求めよ.
(3)$3$つの共有点のうち,$x$座標の値が最も大きい点を$\mathrm{P}$とする.点$\mathrm{P}$における曲線$C$の接線と,直線$L$および$y$軸で囲まれる三角形が正三角形になるときの定数$a$の値を求め,その正三角形の面積を求めよ.
山形大学 国立 山形大学 2014年 第1問
三角形$\mathrm{ABC}$の各辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$を$1:2$に内分する点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.$\mathrm{AQ}$と$\mathrm{CP}$の交点を$\mathrm{S}$,$\mathrm{BR}$と$\mathrm{AQ}$の交点を$\mathrm{T}$,$\mathrm{CP}$と$\mathrm{BR}$の交点を$\mathrm{U}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,次の問に答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{Q}$を通り辺$\mathrm{AC}$と平行な直線と,$\mathrm{BR}$の交点を$\mathrm{V}$とするとき,$\overrightarrow{\mathrm{VQ}}$を$\overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AT}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\overrightarrow{\mathrm{AS}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(5)$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\angle \mathrm{BAC}={90}^\circ$であるとき,$|\overrightarrow{\mathrm{ST}}|$,$|\overrightarrow{\mathrm{SU}}|$,$\angle \mathrm{TSU}$および三角形$\mathrm{STU}$の面積を求めよ.
小樽商科大学 国立 小樽商科大学 2014年 第2問
$a$を正の実数とする.$xy$平面上の放物線$y=x^2$上に,点$\displaystyle \mathrm{A} \left( -\frac{1}{a},\ \frac{1}{a^2} \right)$および点$\mathrm{B}(2a,\ 4a^2)$をとる.また点$\mathrm{O}$を原点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$と$y$軸の交点$\mathrm{C}$の座標を求めよ.
(2)$\triangle \mathrm{OAB}$の面積を$S(a)$とする.$a$が正の実数全体を動くとき,$S(a)$を最小にする$a$の値と,そのときの$S(a)$の値を求めよ.
山形大学 国立 山形大学 2014年 第4問
座標平面上の$1$次変換$f$は点$(1,\ 2)$を点$\displaystyle \left( \frac{1}{2}-\sqrt{3},\ 1+\frac{\sqrt{3}}{2} \right)$に,点$(3,\ 4)$を点$\displaystyle \left( \frac{3}{2}-2 \sqrt{3},\ 2+\frac{3 \sqrt{3}}{2} \right)$に移すとする.$\mathrm{O}$を原点として,次の問に答えよ.

(1)$1$次変換$f$を表す行列$A$を求めよ.
(2)点$\mathrm{P}(1,\ 0)$が$f$により点$\mathrm{Q}$に移るとき,$\angle \mathrm{POQ}$を求めよ.また線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{R}$を$(2 \cos \theta,\ 2 \sin \theta)$で定める$\displaystyle \left( 0<\theta \leqq \frac{\pi}{2} \right)$.$f$により,点$\mathrm{R}$は点$\mathrm{S}$に,点$\mathrm{S}$は点$\mathrm{T}$に,点$\mathrm{T}$は点$\mathrm{U}$に,点$\mathrm{U}$は点$\mathrm{V}$に移るとする.

(i) 三角形$\mathrm{ORS}$の面積を求めよ.
(ii) 点$(2,\ 0)$と点$\mathrm{R}$,$\mathrm{S}$,$\mathrm{T}$,$\mathrm{U}$,$\mathrm{V}$を頂点とする六角形の面積$H(\theta)$の最大値と,そのときの$\theta$の値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2014年 第1問
以下の問に答えよ.

(1)$\displaystyle \left[ \frac{1}{3}x+1 \right]=[2x-1]$を満たす実数$x$の範囲を求めよ.ここで,$[x]$は$x$を超えない最大の整数である.
(2)$\triangle \mathrm{ABC}$と,$\overrightarrow{\mathrm{MA}}+\overrightarrow{\mathrm{MB}}+k \overrightarrow{\mathrm{MC}}=\overrightarrow{\mathrm{0}} (k>0)$を満たす点$\mathrm{M}$が存在する.点$\mathrm{A}$と点$\mathrm{M}$を通る直線と辺$\mathrm{BC}$の交点を$\mathrm{N}$とする.$\displaystyle \frac{3}{4} \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{BN}}$のとき,$k$はいくらか.
(3)初項が正の数である等比数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$が,漸化式
\[ a_{n+1}+\left( \frac{1}{2} \right)^{2n+1}=3a_1a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たしているとき,以下の問に答えよ.

(i) $\{a_n\}$の初項と公比を求めよ.
(ii) 無限級数$\displaystyle \sum_{k=1}^\infty a_k$が収束するかどうか調べよ.収束する場合には,その和を求めよ.
宮崎大学 国立 宮崎大学 2014年 第2問
下図の平行六面体において,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とし,$\triangle \mathrm{ACD}$と線分$\mathrm{OF}$の交点を$\mathrm{H}$とする.さらに,四面体$\mathrm{OACD}$が$1$辺の長さ$1$の正四面体であるとする.このとき,次の各問に答えよ.
(図は省略)

(1)$\triangle \mathrm{ACD}$の重心が点$\mathrm{H}$に一致することを示し,$2$つの線分$\mathrm{OH}$と$\mathrm{HF}$の比$\mathrm{OH}:\mathrm{HF}$を求めよ.
(2)内積$\overrightarrow{\mathrm{HE}} \cdot \overrightarrow{\mathrm{HF}}$の値を求めよ.
(3)$\triangle \mathrm{HEF}$の面積を求めよ.
宮崎大学 国立 宮崎大学 2014年 第2問
下図の平行六面体において,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とし,$\triangle \mathrm{ACD}$と線分$\mathrm{OF}$の交点を$\mathrm{H}$とする.さらに,四面体$\mathrm{OACD}$が$1$辺の長さ$1$の正四面体であるとする.このとき,次の各問に答えよ.
(図は省略)

(1)$\triangle \mathrm{ACD}$の重心が点$\mathrm{H}$に一致することを示し,$2$つの線分$\mathrm{OH}$と$\mathrm{HF}$の比$\mathrm{OH}:\mathrm{HF}$を求めよ.
(2)内積$\overrightarrow{\mathrm{HE}} \cdot \overrightarrow{\mathrm{HF}}$の値を求めよ.
(3)$\triangle \mathrm{HEF}$の面積を求めよ.
小樽商科大学 国立 小樽商科大学 2014年 第1問
次の$[ ]$の中を適当に補いなさい.

(1)$1$回の操作で溶液の不純物の$25 \, \%$を除去出来る装置で不純物を除去するとき,この操作を複数回行い,元の不純物の$98 \, \%$以上を除去するには,最低何回以上この操作をする必要があるかを求めると$[ ]$回以上.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(2)中心が$(0,\ 1)$で半径$1$の円がある.下図のように,この円の直径$\mathrm{AB}$と原点$\mathrm{O}(0,\ 0)$と,$x$軸上の点$\mathrm{C}(1,\ 0)$をとる.$\angle \mathrm{AOC}={60}^\circ$とする.点$\mathrm{A}$の$x$座標を$t$(ただし$t>0$)とし,$\triangle \mathrm{OAB}$の面積を$S$とするとき,$t$と$S$を求めると$(t,\ S)=[ ]$.
(図は省略)
(3)$4$桁の正の整数$n$に対し,千の位,百の位,十の位,一の位の数字をそれぞれ$a,\ b,\ c,\ d$とする.$a>b>c>d$を満たす$n$は全部で$p$個あり,$a>c$かつ$b>d$を満たす$n$は全部で$q$個ある.このとき,$p$と$q$を求めると$(p,\ q)=[ ]$.
群馬大学 国立 群馬大学 2014年 第5問
一辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$があり,辺$\mathrm{BF}$上に点$\mathrm{P}$と辺$\mathrm{DH}$上に点$\mathrm{Q}$を$\displaystyle \mathrm{BP}=\mathrm{DQ}=\frac{3}{4}$となるようにとる.点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$を含む平面と直線$\mathrm{CG}$の交点を$\mathrm{R}$とする.また直線$\mathrm{PR}$と辺$\mathrm{FG}$の交点を$\mathrm{S}$とし,直線$\mathrm{QR}$と辺$\mathrm{GH}$の交点を$\mathrm{T}$とする.このとき,以下の問いに答えよ.
(図は省略)

(1)四面体$\mathrm{SGTR}$の体積を求めよ.
(2)$\triangle \mathrm{PFS}$,$\triangle \mathrm{QTH}$,四角形$\mathrm{FSTH}$,四角形$\mathrm{PSTQ}$及び四角形$\mathrm{PFHQ}$で囲まれた図形の体積を求めよ.
群馬大学 国立 群馬大学 2014年 第5問
一辺の長さを$1$とする立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$があり,辺$\mathrm{BF}$上に点$\mathrm{P}$と辺$\mathrm{DH}$上に点$\mathrm{Q}$を$\displaystyle \mathrm{BP}=\mathrm{DQ}=\frac{3}{4}$となるようにとる.点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$を含む平面と直線$\mathrm{CG}$の交点を$\mathrm{R}$とする.また直線$\mathrm{PR}$と辺$\mathrm{FG}$の交点を$\mathrm{S}$とし,直線$\mathrm{QR}$と辺$\mathrm{GH}$の交点を$\mathrm{T}$とする.このとき,以下の問いに答えよ.
(図は省略)

(1)四面体$\mathrm{SGTR}$の体積を求めよ.
(2)$\triangle \mathrm{PFS}$,$\triangle \mathrm{QTH}$,四角形$\mathrm{FSTH}$,四角形$\mathrm{PSTQ}$及び四角形$\mathrm{PFHQ}$で囲まれた図形の体積を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。