タグ「三角形」の検索結果

44ページ目:全1576問中431問~440問を表示)
大阪工業大学 私立 大阪工業大学 2015年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$の中点を$\mathrm{C}$,辺$\mathrm{AB}$を$1:3$に内分する点を$\mathrm{D}$とする.$|\overrightarrow{\mathrm{OC}}|=2$,$|\overrightarrow{\mathrm{OD}}|=2$,$\angle \mathrm{COD}={60}^\circ$とするとき,次の空所を埋めよ.

(1)$\overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OD}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$を用いて表すと,$\overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OD}}=[ウ] \overrightarrow{\mathrm{OA}}+[エ] \overrightarrow{\mathrm{OB}}$である.
(2)$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$を,$\overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OD}}$を用いて表すと,$\overrightarrow{\mathrm{OA}}=[オ] \overrightarrow{\mathrm{OC}}+[カ] \overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OB}}=[キ] \overrightarrow{\mathrm{OC}}+[ク] \overrightarrow{\mathrm{OD}}$である.
(3)$|\overrightarrow{\mathrm{OA}}|=[ケ]$であり,$|\overrightarrow{\mathrm{OB}}|=[コ]$である.
(4)$\triangle \mathrm{OAB}$の面積は$[サ]$である.
京都産業大学 私立 京都産業大学 2015年 第3問
$xy$平面上に$\triangle \mathrm{OAB}$がある.ただし,点$\mathrm{O}$は原点,点$\mathrm{A}$の座標は$(5,\ 0)$,点$\mathrm{B}$の$y$座標は正であり,$\mathrm{OB}=4$,$\angle \mathrm{AOB}=\theta$であるとする.さらに,$\triangle \mathrm{OAB}$の外側に,辺$\mathrm{AB}$を共有する正方形$\mathrm{ABCD}$がある.

(1)$\theta$を用いて表すと,$\mathrm{B}$の座標は$[ア]$であり,$\mathrm{C}$の座標は$[イ]$である.
(2)$\mathrm{C}$の$x$座標は$\theta=[ウ]$のとき最大値をとり,$\mathrm{C}$の$y$座標は$\theta=[エ]$のとき最大値をとる.
以下では,$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$が一直線上にあるとする.
(3)$\mathrm{AB}=[オ]$である.$\triangle \mathrm{OAB}$の内接円の半径は$[カ]$である.
(4)$\triangle \mathrm{OAD}$の外接円の半径を求めよ.
京都産業大学 私立 京都産業大学 2015年 第2問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ 0)$,$\mathrm{B}(0,\ b)$がある.ここで,$a,\ b$は正の整数である.

$\triangle \mathrm{OAB}$の内部の格子点の個数を$f(a,\ b)$と表す.ここで,格子点とは,$x$座標,$y$座標がともに整数である点のことである.また,三角形の内部は,その三角形の頂点,辺を含まないものとする.
(1)$a=4,\ b=4$のとき,$\triangle \mathrm{OAB}$の内部の格子点は$3$個であり,それらの座標は$[ ]$である.したがって,$f(4,\ 4)=3$である.
(2)$f(4,\ 8)=[ ]$である.
(3)$2$以上の整数$n$に対し,$f(n,\ n)$を$n$の式で表すと$[ ]$である.
(4)$2$以上の整数$n$に対し,$f(n,\ 2n)$を$n$の式で表すと$[ ]$である.
(5)$n$を$2$以上の整数,$k$を$3$以上の整数とする.$f(n,\ kn)$を$n$と$k$の式で表すと$[ ]$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}={60}^\circ$,$\mathrm{AB}=3$,$\mathrm{BC}=7$のとき,$\mathrm{AC}$は$[ケ]$である.さらに,$\triangle \mathrm{ABC}$の面積は$[コ] \sqrt{[サ]}$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第2問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}=5$,$\mathrm{BC}=10$のとき,この三角形の面積を最大にする辺$\mathrm{CA}$の値は$[エ] \sqrt{[オ]}$である.
広島女学院大学 私立 広島女学院大学 2015年 第3問
下の図について,次の値を求めよ.
(図は省略)

(1)$\mathrm{AB}=[ ],\ \mathrm{BC}=[ ]$
(2)$\triangle \mathrm{ABC}$の面積$=[ ]$
(3)$\mathrm{CH}=[ ]$
(4)$\sin {105}^\circ=[ ],\ \cos {105}^\circ=[ ]$
広島女学院大学 私立 広島女学院大学 2015年 第3問
三角形$\mathrm{ABC}$において$\mathrm{AB}=6$,$\angle \mathrm{A}={60}^\circ$,$\angle \mathrm{A}$の$2$等分線と$\mathrm{BC}$との交点を$\mathrm{D}$とする.三角形$\mathrm{ABD}$と三角形$\mathrm{ADC}$の面積比が$2:3$のとき,次の値を求めよ.

(1)$\mathrm{AC}$の長さ$=[ ]$
(2)$\mathrm{BD}$の長さ$=[ ]$
崇城大学 私立 崇城大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\angle \mathrm{A}$は鋭角である.$\triangle \mathrm{ABC}$の面積が$2 \sqrt{2}$のとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を求めよ.
(2)$\triangle \mathrm{ABC}$の内部の点$\mathrm{P}$が$3 \overrightarrow{\mathrm{PA}}+2 \overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}}$を満たすとき,線分$\mathrm{PA}$の長さを求めよ.
崇城大学 私立 崇城大学 2015年 第2問
$k$を正の定数とする.放物線$y=-x^2-2x+3 \cdots\cdots①$と直線$y=k \cdots\cdots②$について,次の各問に答えよ.

(1)放物線$①$と$x$軸で囲まれた図形の面積を求めよ.
(2)放物線$①$と直線$②$が$2$点$\mathrm{A}$,$\mathrm{B}$で交わっているとき,原点$\mathrm{O}$と$2$点$\mathrm{A}$,$\mathrm{B}$を結んでできる$\triangle \mathrm{OAB}$の面積の最大値を求めよ.
近畿大学 私立 近畿大学 2015年 第3問
座標平面上に曲線$\displaystyle C:y=\frac{1}{x}(x-t)(x-t-1)$(ただし$x>0,\ t>0$)がある.$C$上の点$\mathrm{P}(t,\ 0)$における接線を$\ell_1$,点$\mathrm{Q}(t+1,\ 0)$における接線を$\ell_2$とし,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle t=\frac{1}{5}$の場合について考える.$\ell_1$の傾きは$[ア][イ]$,$\ell_2$の傾きは$\displaystyle \frac{[ウ]}{[エ]}$であり,点$\mathrm{R}$の$y$座標は$\displaystyle -\frac{[オ]}{[カ]}$である.また,$\ell_1$,$\ell_2$および$C$によって囲まれた部分の面積は
\[ \frac{[キ]}{[ク][ケ]} \log [コ]-\frac{[サ][シ]}{[ス][セ]} \]
である.
(2)$\ell_1$と$\ell_2$が直交するのは$\displaystyle t=\frac{[ソ][タ]+\sqrt{[チ]}}{[ツ]}$のときである.また,$\triangle \mathrm{PQR}$が二等辺三角形となるのは$\displaystyle t=\frac{[テ]}{[ト]}$のときである.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。