タグ「三角形」の検索結果

33ページ目:全1576問中321問~330問を表示)
宮崎大学 国立 宮崎大学 2015年 第3問
四面体$\mathrm{OABC}$の$3$辺$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BC}$上に,それぞれ点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$がある.$\mathrm{OP}=\mathrm{PA}$,$\mathrm{AQ}=2 \mathrm{QB}$とし,点$\mathrm{R}$は点$\mathrm{B}$とは異なるものとする.$\triangle \mathrm{PQR}$の重心を$\mathrm{H}$とするとき,次の各問に答えよ.ただし,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とする.

(1)$\overrightarrow{\mathrm{OH}}$を,$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{\mathrm{OR}}$を用いて表せ.
(2)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.$3$点$\mathrm{O}$,$\mathrm{G}$,$\mathrm{H}$が同一直線上にあるとき,$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
宮崎大学 国立 宮崎大学 2015年 第1問
下図の$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$の延長上に$\mathrm{AB}=\mathrm{BD}$となる点$\mathrm{D}$がある.同様に,辺$\mathrm{BC}$の延長上に$\mathrm{BC}=\mathrm{CE}$となる点$\mathrm{E}$が,辺$\mathrm{CA}$の延長上に$\mathrm{CA}=\mathrm{AF}$となる点$\mathrm{F}$がそれぞれある.$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,直線$\mathrm{GE}$と線分$\mathrm{AC}$,$\mathrm{AB}$,$\mathrm{FD}$との交点をそれぞれ$\mathrm{H}$,$\mathrm{I}$,$\mathrm{J}$とする.このとき,次の比を求めよ.
(図は省略)

(1)$\mathrm{CH}:\mathrm{HA}$
(2)$\mathrm{BI}:\mathrm{IA}$
(3)$\mathrm{DJ}:\mathrm{JF}$
福島大学 国立 福島大学 2015年 第2問
$3$点$\mathrm{A}(1,\ 4)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(-2,\ 7)$を通る$2$次関数$y=f(x)$上に点$\mathrm{P}(p,\ f(p))$がある.ただし,$-2<p \leqq -1$とする.このとき,次の問いに答えなさい.

(1)$f(x)$を求めなさい.
(2)三角形$\mathrm{ACP}$の面積を$p$の式で表しなさい.
(3)三角形$\mathrm{ACP}$の面積が最大となる点$\mathrm{P}$の座標を求めなさい.
福島大学 国立 福島大学 2015年 第4問
三角形$\mathrm{OAB}$の辺$\mathrm{OA}$,$\mathrm{AB}$,$\mathrm{BO}$を共通の比$m:n$に内分する点を,それぞれ,$\mathrm{R}$,$\mathrm{P}$,$\mathrm{Q}$とする.$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}$を$\overrightarrow{b}$とするとき,次の問いに答えなさい.

(1)$\overrightarrow{\mathrm{OP}},\ \overrightarrow{\mathrm{OQ}},\ \overrightarrow{\mathrm{OR}}$を,それぞれ,$m,\ n,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表しなさい.
(2)$|\overrightarrow{\mathrm{QR}}|^2,\ |\overrightarrow{\mathrm{QP}}|^2$の値,および,内積$\overrightarrow{\mathrm{QR}} \cdot \overrightarrow{\mathrm{QP}}$を,それぞれ,$m,\ n,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表しなさい.
(3)三角形$\mathrm{OAB}$の重心$\mathrm{G}$と三角形$\mathrm{PQR}$の重心$\mathrm{H}$が一致することを示しなさい.
宮崎大学 国立 宮崎大学 2015年 第4問
下図の$\triangle \mathrm{ABC}$は,$\angle \mathrm{A}={90}^\circ$で$\mathrm{AB}=1$の直角二等辺三角形である.この$\triangle \mathrm{ABC}$の中に下図のように長方形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$と長方形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_4$をおき,頂点$\mathrm{P}_1$と$\mathrm{Q}_1$が線分$\mathrm{AB}$上に,頂点$\mathrm{P}_4$と$\mathrm{Q}_4$が線分$\mathrm{AC}$上にあるようにする.さらに,頂点$\mathrm{P}_2$と$\mathrm{P}_3$がともに線分$\mathrm{BC}$上に,頂点$\mathrm{Q}_2$と$\mathrm{Q}_3$がともに線分$\mathrm{P}_1 \mathrm{P}_4$上にあるようにする.$x=\mathrm{BP}_2$,$y=\mathrm{P}_1 \mathrm{Q}_2$とするとき,次の各問に答えよ.
(図は省略)

(1)長方形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の面積と長方形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_4$の面積の和を$x$と$y$を用いて表せ.
(2)$x$の値を固定して$y$の値を変化させるとき,長方形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の面積と長方形$\mathrm{Q}_1 \mathrm{Q}_2 \mathrm{Q}_3 \mathrm{Q}_4$の面積の和の最大値を$S(x)$とおく.このとき,$S(x)$を,$x$を用いて表せ.
(3)$x$の値を変化させるとき,$(2)$で求めた$S(x)$の最大値を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第1問
直線$L$を$2x+y=4n$とする.ただし,$n$は自然数とする.原点を$\mathrm{O}$とし,直線$L$と$x$軸との交点を$\mathrm{A}$,直線$L$と$y$軸との交点を$\mathrm{B}$とした三角形$\mathrm{OAB}$を考える.以下の問いに答えよ.

(1)交点$\mathrm{A}$および交点$\mathrm{B}$の座標をそれぞれ求めよ.
(2)直線$M$を$x=k$(ただし$k=0,\ 1,\ \cdots,\ 2n$)とするとき,直線$L$と直線$M$の交点$\mathrm{P}$の座標を求めよ.
(3)$(2)$の直線$M$上の格子点($x$座標および$y$座標がともに整数である点)のうち,三角形$\mathrm{OAB}$の周上および内部にある格子点の総数$T_k$を求めよ.
(4)三角形$\mathrm{OAB}$の周上にある格子点および内部にある格子点の総数$T_n$を求めよ.
(5)三角形$\mathrm{OAB}$の面積$S_n$を求めよ.また,$(4)$で得られた格子点の総数$T_n$と面積$S_n$の比に関する次の極限を求めよ.
\[ \lim_{n \to \infty} \frac{T_n}{S_n} \]
筑波大学 国立 筑波大学 2015年 第2問
半径$1$の円を内接円とする三角形$\mathrm{ABC}$が,辺$\mathrm{AB}$と辺$\mathrm{AC}$の長さが等しい二等辺三角形であるとする.辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$と内接円の接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.また,$\alpha=\angle \mathrm{CAB}$,$\beta=\angle \mathrm{ABC}$とし,三角形$\mathrm{ABC}$の面積を$S$とする.

(1)線分$\mathrm{AQ}$の長さを$\alpha$を用いて表し,線分$\mathrm{QC}$の長さを$\beta$を用いて表せ.
(2)$\displaystyle t=\tan \frac{\beta}{2}$とおく.このとき,$S$を$t$を用いて表せ.
(3)不等式$S \geqq 3 \sqrt{3}$が成り立つことを示せ.さらに,等号が成立するのは,三角形$\mathrm{ABC}$が正三角形のときに限ることを示せ.
筑波大学 国立 筑波大学 2015年 第6問
$\alpha$を実数でない複素数とし,$\beta$を正の実数とする.以下の問いに答えよ.ただし,複素数$w$に対してその共役複素数を$\overline{w}$で表す.

(1)複素数平面上で,関係式$\alpha \overline{z}+\overline{\alpha}z=|z|^2$を満たす複素数$z$の描く図形を$C$とする.このとき,$C$は原点を通る円であることを示せ.
(2)複素数平面上で,$(z-\alpha)(\beta-\overline{\alpha})$が純虚数となる複素数$z$の描く図形を$L$とする.$L$は$(1)$で定めた$C$と$2$つの共有点をもつことを示せ.また,その$2$点を$\mathrm{P}$,$\mathrm{Q}$とするとき,線分$\mathrm{PQ}$の長さを$\alpha$と$\overline{\alpha}$を用いて表せ.
(3)$\beta$の表す複素数平面上の点を$\mathrm{R}$とする.$(2)$で定めた点$\mathrm{P}$,$\mathrm{Q}$と点$\mathrm{R}$を頂点とする三角形が正三角形であるとき,$\beta$を$\alpha$と$\overline{\alpha}$を用いて表せ.
福島大学 国立 福島大学 2015年 第4問
空間に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 1,\ 0)$,$\mathrm{C}(0,\ 0,\ -1)$がある.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面$\alpha$の方程式を求めなさい.
(2)平面$\alpha$に垂直になるように原点$\mathrm{O}$から直線を引いたとき,平面$\alpha$との交点$\mathrm{T}$の座標を求めなさい.
(3)$\triangle \mathrm{ABC}$の面積を求めなさい.
(4)四面体$\mathrm{OABC}$の体積を求めなさい.
宇都宮大学 国立 宇都宮大学 2015年 第2問
$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とし,半径を$1$とする.辺$\mathrm{BC}$の中点を$\mathrm{P}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$(1)$における$\overrightarrow{\mathrm{PQ}}$は,$\overrightarrow{a}+\overrightarrow{b}$と平行で向きが同じとする.$|\overrightarrow{\mathrm{PQ}}|:|\overrightarrow{a}+\overrightarrow{b}|=s:1$とするとき,$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$を,それぞれ$\overrightarrow{a} \cdot \overrightarrow{b}$と$s$を用いて表せ.
(3)$(2)$において,さらに$\displaystyle s=\frac{1}{6}$であるとき,$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。