タグ「三角形」の検索結果

32ページ目:全1576問中311問~320問を表示)
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第1問
$xyz$空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(2,\ 4,\ -1)$を考える.直線$\mathrm{AB}$上の点$\mathrm{C}_1$,$C_2$はそれぞれ次の条件を満たす.

直線$\mathrm{AB}$上を点$\mathrm{C}$が動くとき,$|\overrightarrow{\mathrm{OC}}|$は$\mathrm{C}$が$\mathrm{C}_1$に一致するとき最小となる.

直線$\mathrm{AB}$上を点$\mathrm{C}$が動くとき,$\displaystyle \frac{|\overrightarrow{\mathrm{AC}}|}{|\overrightarrow{\mathrm{OC}}|}$は$\mathrm{C}$が$\mathrm{C}_2$に一致するとき最大となる.

このとき,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OC}_1}|$の値および内積$\overrightarrow{\mathrm{AC}_1} \cdot \overrightarrow{\mathrm{OC}_1}$の値を求めよ.

(2)$\displaystyle \frac{|\overrightarrow{\mathrm{AC}_2}|}{|\overrightarrow{\mathrm{OC}_2}|}$の値および内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}_2}$の値を求めよ.

(3)$2$つの三角形$\triangle \mathrm{AC}_1 \mathrm{O}$と$\triangle \mathrm{AOC}_2$は相似であることを示せ.
岩手大学 国立 岩手大学 2015年 第1問
必答問題$(1)$,$(2)$の$2$問と,選択問題$(3)$,$(4)$のいずれか$1$問を選択し,計$3$問を解答せよ.

(1)(必答)$2$つのベクトル$\overrightarrow{a}=(-2,\ 1,\ 2)$,$\overrightarrow{b}=(-1,\ 1,\ 0)$について,$\overrightarrow{p}=\overrightarrow{a}+t \overrightarrow{b}$とする.$t$がすべての実数値をとって変化するとき,$|\overrightarrow{p}|$の最小値を求めよ.
(2)(必答)$3$直線$4x-3y+3=0$,$x-4y+4=0$,$3x+y-14=0$で作られる三角形の面積を求めよ.
(3)(選択)複素数$\displaystyle z=2 \left( \cos \frac{11}{12} \pi+i \sin \frac{11}{12} \pi \right)$のとき,$z^2$,$z^{-3}$および${|z-\displaystyle\frac{1|{z}}}^2$を求めよ.ただし,$i$は虚数単位とする.
(4)(選択)$2$つの行列$A=\left( \begin{array}{cc}
4 & 2 \\
1 & 3
\end{array} \right)$,$B=\left( \begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array} \right)$について,$B^{-1}AB$,$(B^{-1}AB)^n$および$A^n$を求めよ.ただし,$n$は正の整数とする.
山形大学 国立 山形大学 2015年 第2問
原点を$\mathrm{O}$とする座標平面上に放物線$y=x^2$がある.この放物線上に$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$があり,$a>0$,$b<0$であるとする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{AB}}$が垂直であるとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AB}}|$と$\triangle \mathrm{OAB}$の面積を$a$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OB}}|=3 \sqrt{10}$のとき,点$\mathrm{B}$の座標と$a$を求めよ.
奈良女子大学 国立 奈良女子大学 2015年 第1問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{P}$があり,点$\mathrm{P}$は
\[ 4(\overrightarrow{\mathrm{AP}}+\overrightarrow{\mathrm{CP}})=\overrightarrow{\mathrm{CB}} \]
をみたしているとする.辺$\mathrm{AB}$,$\mathrm{AC}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\overrightarrow{b}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{AC}}$とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{MP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(3)線分の長さの比$\mathrm{MP}:\mathrm{NP}$を求めよ.
(4)三角形$\mathrm{PAB}$,$\mathrm{PBC}$,$\mathrm{PCA}$の面積をそれぞれ$S,\ T,\ U$とする.面積の比$S:T$と$T:U$を求めよ.
島根大学 国立 島根大学 2015年 第2問
$xy$平面上に原点$\mathrm{O}$と$2$点$\mathrm{A}$,$\mathrm{B}$がある.$\overrightarrow{\mathrm{OA}}$の大きさを$3$,$\overrightarrow{\mathrm{OB}}$の大きさを$4$とする.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$\displaystyle \frac{2 \pi}{3}$であるとき,$\overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}$の大きさを求めよ.
(2)$\alpha$が$\displaystyle 0<\alpha<\frac{\pi}{2}$の範囲にあり,$\displaystyle \sin \alpha=\frac{1}{4}$をみたすとする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$4 \alpha$であるとき,$\triangle \mathrm{OAB}$の面積を求めよ.
(3)点$\mathrm{E}(1,\ 0)$に対し,
\[ 4 \overrightarrow{\mathrm{OA}}+3 \overrightarrow{\mathrm{OB}}-12 \overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{0}} \]
が成り立つとき,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を求めよ.
島根大学 国立 島根大学 2015年 第2問
$xy$平面上に原点$\mathrm{O}$と$2$点$\mathrm{A}$,$\mathrm{B}$がある.$\overrightarrow{\mathrm{OA}}$の大きさを$3$,$\overrightarrow{\mathrm{OB}}$の大きさを$4$とする.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$\displaystyle \frac{2 \pi}{3}$であるとき,$\overrightarrow{\mathrm{OA}}+2 \overrightarrow{\mathrm{OB}}$の大きさを求めよ.
(2)$\alpha$が$\displaystyle 0<\alpha<\frac{\pi}{2}$の範囲にあり,$\displaystyle \sin \alpha=\frac{1}{4}$をみたすとする.$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角が$4 \alpha$であるとき,$\triangle \mathrm{OAB}$の面積を求めよ.
(3)点$\mathrm{E}(1,\ 0)$に対し,
\[ 4 \overrightarrow{\mathrm{OA}}+3 \overrightarrow{\mathrm{OB}}-12 \overrightarrow{\mathrm{OE}}=\overrightarrow{\mathrm{0}} \]
が成り立つとき,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を求めよ.
奈良女子大学 国立 奈良女子大学 2015年 第5問
原点を中心とする半径$1$の円$C$と,点$\mathrm{A}(2,\ 0)$を中心とする半径$1$の円$C_1$がある.円$C$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$をとり,$\mathrm{P}$を中心とする半径$1$の円を$C_2$とする.次の問いに答えよ.

(1)円$C_1$と円$C_2$が異なる$2$点で交わるとき,$\cos \theta$のとり得る値の範囲を求めよ.
(2)円$C_1$と円$C_2$が異なる$2$点で交わるとき,その$2$点と点$\mathrm{P}$を頂点とする三角形の面積を$S$とする.以下の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) $S$を$\theta$を用いて表せ.
(ii) $S$の最大値を求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第4問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{O}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a} \neq 0 \]
を満たしていると仮定する.辺$\mathrm{BC}$の中点を$\mathrm{M}$,線分$\mathrm{OB}$の中点を$\mathrm{N}$とし,三角形$\mathrm{OBC}$の外心を$\mathrm{P}$とする.このとき,次の各問いに答えよ.

(1)$\mathrm{M} \neq \mathrm{P}$のとき,線分$\mathrm{MP}$と線分$\mathrm{OA}$は平行であることを示せ.
(2)$\overrightarrow{\mathrm{MP}}=t \overrightarrow{a}$とおいて,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および実数$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
鹿児島大学 国立 鹿児島大学 2015年 第6問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{O}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a} \neq 0 \]
を満たしていると仮定する.辺$\mathrm{BC}$の中点を$\mathrm{M}$,線分$\mathrm{OB}$の中点を$\mathrm{N}$とし,三角形$\mathrm{OBC}$の外心を$\mathrm{P}$とする.このとき,次の各問いに答えよ.

(1)$\mathrm{M} \neq \mathrm{P}$のとき,線分$\mathrm{MP}$と線分$\mathrm{OA}$は平行であることを示せ.
(2)$\overrightarrow{\mathrm{MP}}=t \overrightarrow{a}$とおいて,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および実数$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
鹿児島大学 国立 鹿児島大学 2015年 第4問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{O}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a} \neq 0 \]
を満たしていると仮定する.辺$\mathrm{BC}$の中点を$\mathrm{M}$,線分$\mathrm{OB}$の中点を$\mathrm{N}$とし,三角形$\mathrm{OBC}$の外心を$\mathrm{P}$とする.このとき,次の各問いに答えよ.

(1)$\mathrm{M} \neq \mathrm{P}$のとき,線分$\mathrm{MP}$と線分$\mathrm{OA}$は平行であることを示せ.
(2)$\overrightarrow{\mathrm{MP}}=t \overrightarrow{a}$とおいて,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および実数$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。