タグ「三角形」の検索結果

25ページ目:全1576問中241問~250問を表示)
新潟大学 国立 新潟大学 2015年 第2問
$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$,重心を$\mathrm{G}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,
\[ |\overrightarrow{a}|=|\overrightarrow{b}|=|\overrightarrow{c}|=5,\quad 4\overrightarrow{\mathrm{AG}}+3\overrightarrow{\mathrm{BG}}+5\overrightarrow{\mathrm{CG}}=12\overrightarrow{\mathrm{OG}} \]
をみたすとする.次の問いに答えよ.

(1)$4 \overrightarrow{a}+3 \overrightarrow{b}+5 \overrightarrow{c}=\overrightarrow{\mathrm{0}}$を示せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$および$\overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(3)$|\overrightarrow{\mathrm{OG}}|$の値を求めよ.
横浜国立大学 国立 横浜国立大学 2015年 第3問
点$\mathrm{O}$を中心とする半径$1$の円に内接する三角形$\mathrm{ABC}$があり,
\[ 2\overrightarrow{\mathrm{OA}}+3\overrightarrow{\mathrm{OB}}+4\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.この円上に点$\mathrm{P}$があり,線分$\mathrm{AB}$と線分$\mathrm{CP}$は直交している.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$と$|\overrightarrow{\mathrm{AB}}|$をそれぞれ求めよ.
(2)線分$\mathrm{AB}$と線分$\mathrm{CP}$の交点を$\mathrm{H}$とするとき,$\mathrm{AH}:\mathrm{HB}$を求めよ.
(3)四角形$\mathrm{APBC}$の面積を求めよ.
横浜国立大学 国立 横浜国立大学 2015年 第2問
点$\mathrm{O}$を中心とする半径$1$の円に内接する三角形$\mathrm{ABC}$があり,
\[ 2\overrightarrow{\mathrm{OA}}+3\overrightarrow{\mathrm{OB}}+4\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}} \]
をみたしている.この円上に点$\mathrm{P}$があり,線分$\mathrm{AB}$と線分$\mathrm{CP}$は直交している.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$と$|\overrightarrow{\mathrm{AB}}|$をそれぞれ求めよ.
(2)線分$\mathrm{AB}$と線分$\mathrm{CP}$の交点を$\mathrm{H}$とするとき,$\mathrm{AH}:\mathrm{HB}$を求めよ.
(3)四角形$\mathrm{APBC}$の面積を求めよ.
静岡大学 国立 静岡大学 2015年 第2問
$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=1$であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$に関して$\mathrm{B}$と対称な点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積$S_1$を求めよ.
(2)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\mathrm{DF}:\mathrm{BC}$を求めよ.
(5)$\triangle \mathrm{DEF}$の面積$S_2$を求めよ.
静岡大学 国立 静岡大学 2015年 第1問
$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=1$であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$に関して$\mathrm{B}$と対称な点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積$S_1$を求めよ.
(2)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(4)$\mathrm{DF}:\mathrm{BC}$を求めよ.
(5)$\triangle \mathrm{DEF}$の面積$S_2$を求めよ.
静岡大学 国立 静岡大学 2015年 第2問
$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,$|\overrightarrow{b}|=1$,$|\overrightarrow{c}|=\sqrt{3}$,$\overrightarrow{b} \cdot \overrightarrow{c}=1$であるとする.辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$に関して$\mathrm{B}$と対称な点を$\mathrm{E}$,直線$\mathrm{AE}$と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AE}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{AF}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\mathrm{DF}:\mathrm{BC}$を求めよ.
静岡大学 国立 静岡大学 2015年 第4問
$i$を虚数単位,$r$を$1$より大きい実数とし,$\displaystyle w=r \left( \cos \frac{\pi}{24}+i \sin \frac{\pi}{24} \right)$とおく.また,数列$\{z_n\}$を次の式で定める.
\[ z_1=w,\quad z_{n+1}=z_nw^{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$z_2$を$r$を用いて表せ.
(2)$z_n$の偏角の$1$つを$n$を用いて表せ.
(3)複素数平面で原点を$\mathrm{O}$,$z_n$で表される点を$\mathrm{P}_n$とする.$7 \leqq n \leqq 48$のとき,$\triangle \mathrm{P}_n \mathrm{OP}_{n+1}$が$\displaystyle \angle \mathrm{O}=\frac{\pi}{3}$を満たす直角三角形となるような$n$と$r$をそれぞれ求めよ.また,そのときの$z_n$の偏角$\theta$を$0 \leqq \theta<2\pi$の範囲で求めよ.
静岡大学 国立 静岡大学 2015年 第4問
$i$を虚数単位,$r$を$1$より大きい実数とし,$\displaystyle w=r \left( \cos \frac{\pi}{24}+i \sin \frac{\pi}{24} \right)$とおく.また,数列$\{z_n\}$を次の式で定める.
\[ z_1=w,\quad z_{n+1}=z_nw^{n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$z_2$を$r$を用いて表せ.
(2)$z_n$の偏角の$1$つを$n$を用いて表せ.
(3)複素数平面で原点を$\mathrm{O}$,$z_n$で表される点を$\mathrm{P}_n$とする.$7 \leqq n \leqq 48$のとき,$\triangle \mathrm{P}_n \mathrm{OP}_{n+1}$が$\displaystyle \angle \mathrm{O}=\frac{\pi}{3}$を満たす直角三角形となるような$n$と$r$をそれぞれ求めよ.また,そのときの$z_n$の偏角$\theta$を$0 \leqq \theta<2\pi$の範囲で求めよ.
熊本大学 国立 熊本大学 2015年 第1問
$\triangle \mathrm{ABC}$の$3$辺の長さを$\mathrm{BC}=a$,$\mathrm{AC}=b$,$\mathrm{AB}=c$とし,条件
\[ a+b+c=1,\quad 9ab=1 \]
が成り立つとする.以下の問いに答えよ.

(1)$a$の値の範囲を求めよ.
(2)$\theta=\angle \mathrm{C}$とするとき,$\cos \theta$の値の範囲を求めよ.
熊本大学 国立 熊本大学 2015年 第3問
$a$と$b$を正の実数とする.$\triangle \mathrm{ABC}$において,$\angle \mathrm{B}$と$\angle \mathrm{C}$は鋭角とする.点$\mathrm{A}$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_1$とし,線分$\mathrm{AX}_1$の長さを$1$とする.また,$\mathrm{BX}_1=a$,$\mathrm{CX}_1=b$とする.各$n=1,\ 2,\ 3,\ \cdots$に対して以下の操作を行う.

辺$\mathrm{BC}$上の点$\mathrm{X}_n$を通り辺$\mathrm{AC}$に平行な直線を引き,辺$\mathrm{AB}$との交点を$\mathrm{Y}_n$とする.また,点$\mathrm{Y}_n$を通り辺$\mathrm{BC}$に平行な直線を引き,辺$\mathrm{AC}$との交点を$\mathrm{Z}_n$とする.点$\mathrm{Z}_n$を通り辺$\mathrm{BC}$に直交する直線を引き,辺$\mathrm{BC}$との交点を$\mathrm{X}_{n+1}$とする.

線分$\mathrm{Z}_n \mathrm{X}_{n+1}$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_1$を$a,\ b$を用いて表せ.
(2)$l_{n+1}$を$l_n$,$a$,$b$を用いて表せ.
(3)$b=8a$のとき,$\displaystyle l_n>\frac{1}{2}$となる最小の奇数$n$を求めよ.必要ならば,$3.169<\log_2 9<3.17$を用いてよい.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。