タグ「三角形」の検索結果

24ページ目:全1576問中231問~240問を表示)
広島大学 国立 広島大学 2015年 第3問
座標平面上に原点$\mathrm{O}$と$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とする.点$\mathrm{C}$は$|\overrightarrow{\mathrm{OC}}|=1$,$0^\circ<\angle \mathrm{AOC}<{90}^\circ$,$0^\circ<\angle \mathrm{BOC}<{90}^\circ$を満たすとする.$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=t$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$t$を用いて表せ.
(2)線分$\mathrm{AB}$と線分$\mathrm{OC}$の交点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$t$を用いて表せ.
(3)点$\mathrm{C}$から線分$\mathrm{OA}$に引いた垂線と線分$\mathrm{AB}$の交点を$\mathrm{E}$とする.$\mathrm{D}$は$(2)$で定めた点とする.このとき,$\triangle \mathrm{OBD}$と$\triangle \mathrm{CDE}$の面積の和を$t$を用いて表せ.
岡山大学 国立 岡山大学 2015年 第2問
$3$辺の長さが$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の三角形$\mathrm{ABC}$がある.辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上の点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を,$\mathrm{AP}=\mathrm{BQ}=\mathrm{CR}=x$となるようにとる.ただし,$0<x<3$である.このとき,次の問いに答えよ.

(1)$\angle \mathrm{ABC}$の値を求めよ.
(2)三角形$\mathrm{BPQ}$の面積を$x$の式で表せ.
(3)三角形$\mathrm{PQR}$の面積が最小となるときの$x$の値を求めよ.
金沢大学 国立 金沢大学 2015年 第1問
四面体$\mathrm{OABC}$において,$3$つのベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$はどの$2$つも互いに垂直であり,$h>0$に対して,
\[ |\overrightarrow{\mathrm{OA}}|=1,\quad |\overrightarrow{\mathrm{OB}}|=2,\quad |\overrightarrow{\mathrm{OC}}|=h \]
とする.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を通る平面上の点$\mathrm{P}$は,$\overrightarrow{\mathrm{CP}}$が$\overrightarrow{\mathrm{CA}}$と$\overrightarrow{\mathrm{CB}}$のどちらとも垂直となる点であるとする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}=\alpha \overrightarrow{\mathrm{OA}}+\beta \overrightarrow{\mathrm{OB}}$とするとき,$\alpha$と$\beta$を$h$を用いて表せ.
(2)直線$\mathrm{OP}$と直線$\mathrm{AB}$が直交していることを示せ.
(3)$\triangle \mathrm{PAB}$は,辺$\mathrm{AB}$を底辺とする二等辺三角形ではないことを示せ.
金沢大学 国立 金沢大学 2015年 第1問
平面上の三角形$\mathrm{ABC}$で,$|\overrightarrow{\mathrm{AB}}|=7$,$|\overrightarrow{\mathrm{BC}}|=5$,$|\overrightarrow{\mathrm{AC}}|=6$となるものを考える.また,三角形$\mathrm{ABC}$の内部の点$\mathrm{P}$は,
\[ \overrightarrow{\mathrm{PA}}+s \overrightarrow{\mathrm{PB}}+3 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}} \quad (s>0) \]
を満たすとする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}=\alpha \overrightarrow{\mathrm{AB}}+\beta \overrightarrow{\mathrm{AC}}$とするとき,$\alpha$と$\beta$を$s$を用いて表せ.
(2)$2$直線$\mathrm{AP}$,$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\displaystyle \frac{|\overrightarrow{\mathrm{BD}}|}{|\overrightarrow{\mathrm{DC}}|}$と$\displaystyle \frac{|\overrightarrow{\mathrm{AP}}|}{|\overrightarrow{\mathrm{PD}}|}$を$s$を用いて表せ.
(3)三角形$\mathrm{ABC}$の面積を求めよ.
(4)三角形$\mathrm{APC}$の面積が$2 \sqrt{6}$となるような$s$の値を求めよ.
東北大学 国立 東北大学 2015年 第1問
$xy$平面において,次の式が表す曲線を$C$とする.
\[ x^2+4y^2=1,\quad x>0,\quad y>0 \]
$\mathrm{P}$を$C$上の点とする.$\mathrm{P}$で$C$に接する直線を$\ell$とし,$\mathrm{P}$を通り$\ell$と垂直な直線を$m$として,$x$軸と$y$軸と$m$で囲まれてできる三角形の面積を$S$とする.$\mathrm{P}$が$C$上の点全体を動くとき,$S$の最大値とそのときの$\mathrm{P}$の座標を求めよ.
東北大学 国立 東北大学 2015年 第5問
$t>0$を実数とする.座標平面において,$3$点$\mathrm{A}(-2,\ 0)$,$\mathrm{B}(2,\ 0)$,$\mathrm{P}(t,\ \sqrt{3}t)$を頂点とする三角形$\mathrm{ABP}$を考える.

(1)三角形$\mathrm{ABP}$が鋭角三角形となるような$t$の範囲を求めよ.
(2)三角形$\mathrm{ABP}$の垂心の座標を求めよ.
(3)辺$\mathrm{AB}$,$\mathrm{BP}$,$\mathrm{PA}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{Q}$,$\mathrm{R}$とおく.$t$が$(1)$で求めた範囲を動くとき,三角形$\mathrm{ABP}$を線分$\mathrm{MQ}$,$\mathrm{QR}$,$\mathrm{RM}$で折り曲げてできる四面体の体積の最大値と,そのときの$t$の値を求めよ.
東北大学 国立 東北大学 2015年 第2問
$t>0$を実数とする.座標平面において,$3$点$\mathrm{A}(-2,\ 0)$,$\mathrm{B}(2,\ 0)$,$\mathrm{P}(t,\ \sqrt{3}t)$を頂点とする三角形$\mathrm{ABP}$を考える.

(1)三角形$\mathrm{ABP}$が鋭角三角形となるような$t$の範囲を求めよ.
(2)三角形$\mathrm{ABP}$の垂心の座標を求めよ.
(3)辺$\mathrm{AB}$,$\mathrm{BP}$,$\mathrm{PA}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{Q}$,$\mathrm{R}$とおく.$t$が$(1)$で求めた範囲を動くとき,三角形$\mathrm{ABP}$を線分$\mathrm{MQ}$,$\mathrm{QR}$,$\mathrm{RM}$で折り曲げてできる四面体の体積の最大値と,そのときの$t$の値を求めよ.
九州大学 国立 九州大学 2015年 第2問
$1$辺の長さが$1$である正四面体$\mathrm{OABC}$を考える.辺$\mathrm{OA}$の中点を$\mathrm{P}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{Q}$,辺$\mathrm{OC}$を$1:3$に内分する点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)線分$\mathrm{PQ}$の長さと線分$\mathrm{PR}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{PQ}}$と$\overrightarrow{\mathrm{PR}}$の内積$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{PR}}$を求めよ.
(3)三角形$\mathrm{PQR}$の面積を求めよ.
新潟大学 国立 新潟大学 2015年 第2問
$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$は
\[ |\overrightarrow{a}|=|\overrightarrow{b}|=|\overrightarrow{c}|=5,\quad 4\overrightarrow{a}+3\overrightarrow{b}+5\overrightarrow{c}=\overrightarrow{\mathrm{0}} \]
をみたすとする.次の問いに答えよ.

(1)$100+3 \overrightarrow{a} \cdot \overrightarrow{b}+5 \overrightarrow{c} \cdot \overrightarrow{a}=0$が成り立つことを示せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$および$\overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とするとき,$|\overrightarrow{\mathrm{OG}}|$の値を求めよ.
東北大学 国立 東北大学 2015年 第4問
$a>0$を実数とする.$n=1,\ 2,\ 3,\ \cdots$に対し,座標平面の$3$点
\[ (2n\pi,\ 0),\quad \left( \left(2n+\frac{1}{2} \right) \pi,\ \frac{1}{{\left\{ \left( 2n+\displaystyle\frac{1}{2} \right)\pi \right\}}^a} \right),\quad ((2n+1)\pi,\ 0) \]
を頂点とする三角形の面積を$A_n$とし,
\[ B_n=\int_{2n\pi}^{(2n+1)\pi} \frac{\sin x}{x^a} \, dx,\qquad C_n=\int_{2n\pi}^{(2n+1)\pi} \frac{\sin^2 x}{x^a} \, dx \]
とおく.

(1)$n=1,\ 2,\ 3,\ \cdots$に対し,次の不等式が成り立つことを示せ.
\[ \frac{2}{\{(2n+1)\pi\}^a} \leqq B_n \leqq \frac{2}{(2n\pi)^a} \]
(2)極限値$\displaystyle \lim_{n \to \infty} \frac{A_n}{B_n}$を求めよ.
(3)極限値$\displaystyle \lim_{n \to \infty} \frac{A_n}{C_n}$を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。