タグ「三角形」の検索結果

23ページ目:全1576問中221問~230問を表示)
前橋工科大学 公立 前橋工科大学 2016年 第2問
空間内の$3$点$\mathrm{A}(0,\ -1,\ 2)$,$\mathrm{B}(-3,\ -2,\ 4)$,$\mathrm{C}(1,\ 1,\ 3)$を通る平面を$\alpha$とする.次の問いに答えなさい.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$と$\triangle \mathrm{ABC}$の面積を求めなさい.
(2)原点$\mathrm{O}$から平面$\alpha$に垂線を下ろし,$\alpha$との交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めなさい.
(3)直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,線分$\mathrm{AH}$と$\mathrm{AD}$の長さの比を求めなさい.
センター試験 問題集 センター試験 2015年 第2問
$\kagiichi$ \ 条件$p_1,\ p_2,\ q_1,\ q_2$の否定をそれぞれ$\overline{p_1},\ \overline{p_2},\ \overline{q_1},\ \overline{q_2}$と書く.

(1)次の$[ア]$に当てはまるものを,下の$\nagamarurei$~$\nagamarusan$のうちから一つ選べ.

命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($q_1$かつ$q_2$)」の対偶は$[ア]$である.

$\nagamarurei$ ($\overline{p_1}$または$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$または$\overline{q_2}$)
$\nagamaruichi$ ($\overline{q_1}$または$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$または$\overline{p_2}$)
$\nagamaruni$ ($\overline{q_1}$かつ$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$かつ$\overline{p_2}$)
$\nagamarusan$ ($\overline{p_1}$かつ$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$かつ$\overline{q_2}$)
(2)自然数$n$に対する条件$p_1,\ p_2,\ q_1,\ q_2$を次のように定める.
\[\begin{array}{ll}
p_1:n \text{は素数である} & p_2:n+2 \text{は素数である} \\
q_1:n+1 \text{は} 5 \text{の倍数である} & q_2:n+1 \text{は}6 \text{の倍数である}
\end{array} \]
$30$以下の自然数$n$のなかで$[イ]$と$[ウエ]$は
命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($\overline{q_1}$かつ$q_2$)」
の反例となる.
\mon[$\kagini$] $\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\angle \mathrm{ABC}={120}^\circ$とする.

このとき,$\mathrm{AC}=[オ]$,$\displaystyle \sin \angle \mathrm{ABC}=\frac{\sqrt{[カ]}}{[キ]}$であり,
$\displaystyle \sin \angle \mathrm{BCA}=\frac{[ク] \sqrt{[ケ]}}{[コサ]}$である.

直線$\mathrm{BC}$上に点$\mathrm{D}$を,$\mathrm{AD}=3 \sqrt{3}$かつ$\angle \mathrm{ADC}$が鋭角,となるようにとる.点$\mathrm{P}$を線分$\mathrm{BD}$上の点とし,$\triangle \mathrm{APC}$の外接円の半径を$R$とすると,$R$のとり得る値の範囲は$\displaystyle \frac{[シ]}{[ス]} \leqq R \leqq [セ]$である.
センター試験 問題集 センター試験 2015年 第6問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=\mathrm{AC}=5$,$\mathrm{BC}=\sqrt{5}$とする.辺$\mathrm{AC}$上に点$\mathrm{D}$を$\mathrm{AD}=3$となるようにとり,辺$\mathrm{BC}$の$\mathrm{B}$の側の延長と$\triangle \mathrm{ABD}$の外接円との交点で$\mathrm{B}$と異なるものを$\mathrm{E}$とする.

$\mathrm{CE} \cdot \mathrm{CB}=[アイ]$であるから,$\mathrm{BE}=\sqrt{[ウ]}$である.
$\triangle \mathrm{ACE}$の重心を$\mathrm{G}$とすると,$\displaystyle \mathrm{AG}=\frac{[エオ]}{[カ]}$である.
$\mathrm{AB}$と$\mathrm{DE}$の交点を$\mathrm{P}$とすると
\[ \frac{\mathrm{DP}}{\mathrm{EP}}=\frac{[キ]}{[ク]} \cdots\cdots① \]
である.
$\triangle \mathrm{ABC}$と$\triangle \mathrm{EDC}$において,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{D}$,$\mathrm{E}$は同一円周上にあるので$\angle \mathrm{CAB}=\angle \mathrm{CED}$で,$\angle \mathrm{C}$は共通であるから
\[ \mathrm{DE}=[ケ] \sqrt{[コ]} \cdots\cdots② \]
である.
$①$,$②$から,$\displaystyle \mathrm{EP}=\frac{[サ] \sqrt{[シ]}}{[ス]}$である.
大阪大学 国立 大阪大学 2015年 第3問
平面上に長さ$2$の線分$\mathrm{AB}$を直径とする円$C$がある.$2$点$\mathrm{A}$,$\mathrm{B}$を除く$C$上の点$\mathrm{P}$に対し,$\mathrm{AP}=\mathrm{AQ}$となるように線分$\mathrm{AB}$上の点$\mathrm{Q}$をとる.また,直線$\mathrm{PQ}$と円$C$の交点のうち,$\mathrm{P}$でない方を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{AQR}$の面積を$\theta=\angle \mathrm{PAB}$を用いて表せ.
(2)点$\mathrm{P}$を動かして$\triangle \mathrm{AQR}$の面積が最大になるとき,$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を用いて表せ.
一橋大学 国立 一橋大学 2015年 第2問
座標平面上の原点を$\mathrm{O}$とする.点$\mathrm{A}(a,\ 0)$,点$\mathrm{B}(0,\ b)$および点$\mathrm{C}$が
\[ \mathrm{OC}=1,\quad \mathrm{AB}=\mathrm{BC}=\mathrm{CA} \]
を満たしながら動く.

(1)$s=a^2+b^2,\ t=ab$とする.$s$と$t$の関係を表す等式を求めよ.
(2)$\triangle \mathrm{ABC}$の面積のとりうる値の範囲を求めよ.
神戸大学 国立 神戸大学 2015年 第3問
$a,\ b,\ c$を$1$以上$7$以下の自然数とする.次の条件$(*)$を考える.

\mon[$(*)$] $3$辺の長さが$a,\ b,\ c$である三角形と,$3$辺の長さが$\displaystyle \frac{1}{a},\ \frac{1}{b},\ \frac{1}{c}$である三角形が両方とも存在する.

以下の問に答えよ.

(1)$a=b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(2)$a>b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(3)条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
神戸大学 国立 神戸大学 2015年 第3問
$a$を正の実数とする.座標平面上の曲線$C$を
\[ y=x^4-2(a+1)x^3+3ax^2 \]
で定める.曲線$C$が$2$つの変曲点$\mathrm{P}$,$\mathrm{Q}$をもち,それらの$x$座標の差が$\sqrt{2}$であるとする.以下の問に答えよ.

(1)$a$の値を求めよ.
(2)線分$\mathrm{PQ}$の中点と$x$座標が一致するような,$C$上の点を$\mathrm{R}$とする.三角形$\mathrm{PQR}$の面積を求めよ.
(3)曲線$C$上の点$\mathrm{P}$における接線が$\mathrm{P}$以外で$C$と交わる点を$\mathrm{P}^\prime$とし,点$\mathrm{Q}$における接線が$\mathrm{Q}$以外で$C$と交わる点を$\mathrm{Q}^\prime$とする.線分$\mathrm{P}^\prime \mathrm{Q}^\prime$の中点の$x$座標を求めよ.
神戸大学 国立 神戸大学 2015年 第5問
$a,\ b,\ c$を$1$以上$7$以下の自然数とする.次の条件$(*)$を考える.

\mon[$(*)$] $3$辺の長さが$a,\ b,\ c$である三角形と,$3$辺の長さが$\displaystyle \frac{1}{a},\ \frac{1}{b},\ \frac{1}{c}$である三角形が両方とも存在する.

以下の問に答えよ.

(1)$a=b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(2)$a>b>c$であり,かつ条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
(3)条件$(*)$をみたす$a,\ b,\ c$の組の個数を求めよ.
旭川医科大学 国立 旭川医科大学 2015年 第4問
四面体$\mathrm{OAPQ}$において,$\angle \mathrm{AOP}=\angle \mathrm{AOQ}=\angle \mathrm{POQ}={60}^\circ$,$\mathrm{OA}=1$,$\mathrm{OP}=p$,$\mathrm{OQ}=q$とし,頂点$\mathrm{A}$から平面$\mathrm{OPQ}$に下ろした垂線を$\mathrm{AH}$とする.ただし,$p \leqq q$とする.このとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{AQ}}$を$p,\ q$を用いて表せ.
(2)$\mathrm{AH}$の長さを求めよ.
(3)$p+q=3$,および$\triangle \mathrm{APQ}$の面積が$1$のとき,以下の値を求めよ.
\[ (1) \ pq \qquad (2) \ p \qquad (3) \ \text{四面体} \mathrm{OAPQ} \text{の体積} \]
広島大学 国立 広島大学 2015年 第1問
$a,\ b,\ c$を実数とし,$a<1$とする.座標平面上の$2$曲線
\[ C_1:y=x^2-x,\quad C_2:y=x^3+bx^2+cx-a \]
を考える.$C_1$と$C_2$は,点$\mathrm{P}(1,\ 0)$と,それとは異なる点$\mathrm{Q}$を通る.また,点$\mathrm{P}$における$C_1$と$C_2$の接線の傾きは等しいものとする.点$\mathrm{P}$における$C_1$の接線を$\ell_1$,点$\mathrm{Q}$における$C_1$の接線を$\ell_2$,点$\mathrm{Q}$における$C_2$の接線を$\ell_3$とする.次の問いに答えよ.

(1)$b,\ c$および点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)$\ell_1,\ \ell_2,\ \ell_3$が三角形をつくらないような$a$の値を求めよ.
(3)$\ell_1,\ \ell_2,\ \ell_3$が直角三角形をつくるような$a$の値の個数を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。