タグ「三角形」の検索結果

156ページ目:全1576問中1551問~1560問を表示)
北海道医療大学 私立 北海道医療大学 2010年 第2問
$1$辺の長さが$1$の正三角形$\mathrm{ABC}$において,図のように辺$\mathrm{BC}$上に点$\mathrm{D}$を$\mathrm{BD}:\mathrm{DC}=2:1$となるようにとる.以下の問に答えよ.
(図は省略)

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$\triangle \mathrm{ABD}$の面積と$\triangle \mathrm{ADC}$の面積をそれぞれ求めよ.
(3)$\mathrm{AD}$の長さを求めよ.
(4)$\angle \mathrm{BAD}=\theta$とおくとき,$\sin \theta$と$\cos \theta$の値を求めよ.
(5)$\triangle \mathrm{ABD}$の内接円の中心を$\mathrm{O}$,半径を$r$とし,$\triangle \mathrm{ADC}$の内接円の中心を$\mathrm{O}^\prime$,半径を$r^\prime$とする.

\mon[$(5$-$1)$] $r$と$r^\prime$の値を求めよ.
\mon[$(5$-$2)$] 線分$\mathrm{OO}^\prime$の長さを$L$とする.$L^2$の値を求めよ.
関西大学 私立 関西大学 2010年 第2問
$\triangle \mathrm{ABC}$において$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{b}$とする.いま,$\mathrm{BC}$を$3:2$に内分する点を$\mathrm{P}$,$\mathrm{AP}$を$3:2$に内分する点を$\mathrm{Q}$とし,$2$点$\mathrm{B}$,$\mathrm{Q}$を通る直線が線分$\mathrm{AC}$と交わる点を$\mathrm{R}$とする.次の$[ ]$を数値でうめよ.

(1)$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表すと$\overrightarrow{\mathrm{AQ}}=[$1$] \overrightarrow{a}+[$2$] \overrightarrow{b}$である.
(2)$10 \overrightarrow{\mathrm{QA}}+m \overrightarrow{\mathrm{QB}}+n \overrightarrow{\mathrm{QC}}=\overrightarrow{\mathrm{0}}$が成立するならば$m=[$3$]$,$n=[$4$]$である.
(3)$\mathrm{AC}:\mathrm{AR}=1:[$5$]$であり,$\mathrm{BR}:\mathrm{BQ}=1:[$6$]$である.
獨協大学 私立 獨協大学 2010年 第3問
直線$\ell$と$m$が

直線$\ell$:$y=2x$
直線$m$:点$(2,\ 2)$を通る傾き$a$の直線(ただし,$a<0$)

と与えられているとき,以下の問題に答えよ.

(1)直線$\ell$と$m$の交点を$\mathrm{A}$としたとき,点$\mathrm{A}$の座標を求めよ.
(2)直線$m$と$x$軸の交点を$\mathrm{B}$としたとき,点$\mathrm{B}$の$x$座標を求めよ.
(3)原点を$\mathrm{O}$としたとき,三角形$\mathrm{AOB}$の面積$S$を求めよ.
(4)$(3)$で求めた面積$S$の値が$\displaystyle \frac{9}{2}$のとき直線$m$の傾き$a$の値を求めよ.
中央大学 私立 中央大学 2010年 第2問
一辺の長さ$1$の正方形$\mathrm{ABCD}$を考える.まず辺$\mathrm{AB}$上に点$\mathrm{E}$を決め,辺$\mathrm{BC}$上の点$\mathrm{F}$,辺$\mathrm{CD}$上の点$\mathrm{G}$,辺$\mathrm{DA}$上の点$\mathrm{H}$を「四角形$\mathrm{EFGH}$が長方形になる」ようにとる.線分$\mathrm{BE}$の長さを$x (0<x<1)$とおき,以下の設問に答えよ.

(1)線分$\mathrm{BF}$の長さを$x$で表せ.
(2)$\triangle \mathrm{FCG}$の面積を$x$で表せ.
関西大学 私立 関西大学 2010年 第2問
平面上の四角形$\mathrm{OABC}$について,$\mathrm{OA}=\mathrm{OB}=1$,$\displaystyle \mathrm{OC}=\frac{\sqrt{7}}{3}$および$\displaystyle \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{OB}}-\frac{2}{3} \overrightarrow{\mathrm{OA}}$が成り立っているとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.次の$[ ]$をうめよ.

$\mathrm{CB}=[$1$]$,$\overrightarrow{a} \cdot \overrightarrow{b}=[$2$]$であり,$\angle \mathrm{AOB}$は$[$3$]$度である.
$t>0$とし,直線$\mathrm{OA}$上に点$\mathrm{D}$を$\overrightarrow{\mathrm{OD}}=t \overrightarrow{\mathrm{OA}}$となるようにとる.このとき,線分$\mathrm{OB}$と線分$\mathrm{CD}$との交点を$\mathrm{P}$とおくと,$t$を用いて$\overrightarrow{\mathrm{OP}}=[$4$] \overrightarrow{b}$と書ける.
$\triangle \mathrm{OPD}$の重心$\mathrm{G}$が$\triangle \mathrm{OAB}$の内部または周上にあるような$t$の範囲は$0<t \leqq [$5$]$である.また,$\triangle \mathrm{OPD}$の外心を$\mathrm{R}$とおくと,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OD}}$と$\overrightarrow{a}$が垂直であり,$\overrightarrow{\mathrm{OR}}-[$6$] \overrightarrow{\mathrm{OP}}$と$\overrightarrow{b}$も垂直であることから,$\displaystyle t=\frac{1}{3}$のとき,$\overrightarrow{\mathrm{OR}}=[$7$] \overrightarrow{a}+[$8$] \overrightarrow{b}$であり,$|\overrightarrow{\mathrm{OR}}|=[$9$]$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第1問
空間内の四面体$\mathrm{OABC}$について,$|\overrightarrow{\mathrm{OA}}|=3 \sqrt{2}$,$|\overrightarrow{\mathrm{OB}}|=4$,$|\overrightarrow{\mathrm{OC}}|=3$,$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\frac{9}{2}$,$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=\frac{11}{2}$,$\angle \mathrm{BAC}={60}^\circ$とする.このとき以下の$[$1$]$から$[$9$]$に該当する数値を答えなさい.

$|\overrightarrow{\mathrm{AB}}|=[$1$]$,$|\overrightarrow{\mathrm{AC}}|=[$2$]$であり,また,$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=[$3$]$である.
$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,
$\overrightarrow{\mathrm{OD}}=[$4$] \overrightarrow{\mathrm{OA}}+[$5$] \overrightarrow{\mathrm{OB}}+[$6$] \overrightarrow{\mathrm{OC}}$である.
$\triangle \mathrm{OAC}$の重心$\mathrm{G}$と点$\mathrm{B}$を結ぶ線分が$\triangle \mathrm{OAD}$と交わる点を$\mathrm{E}$とするとき,
$\overrightarrow{\mathrm{OE}}=[$7$] \overrightarrow{\mathrm{OA}}+[$8$] \overrightarrow{\mathrm{OB}}+[$9$] \overrightarrow{\mathrm{OC}}$である.
なお,この空間の任意のベクトル$\overrightarrow{p}$は,実数$s,\ t,\ u$を用いて,
$\overrightarrow{p}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$
の形に表すことができ,しかも,表し方はただ$1$通りである.
東京女子大学 私立 東京女子大学 2010年 第2問
$\triangle \mathrm{ABC}$の内部の点$\mathrm{P}$は,$7 \overrightarrow{\mathrm{PA}}+3 \overrightarrow{\mathrm{PB}}+2 \overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{0}}$を満たしている.辺$\mathrm{BC}$を$2:3$に内分する点を$\mathrm{D}$とする.

(1)$\overrightarrow{\mathrm{PD}}$を$\overrightarrow{\mathrm{PB}}$と$\overrightarrow{\mathrm{PC}}$を用いて表せ.
(2)$3$点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{D}$が同一直線上にあることを示せ.
(3)$\triangle \mathrm{PBD}$と$\triangle \mathrm{PCA}$の面積の比を求めよ.
早稲田大学 私立 早稲田大学 2010年 第6問
関数$\displaystyle y=\frac{1}{x}$のグラフと接する$2$本の直線$\ell_1$,$\ell_2$が第$2$象限で交わっている.実数$a,\ b$は$a>0$,$b<0$とし直線$\ell_1$は点$(a,\ 0)$を通り,直線$\ell_2$は点$(b,\ 0)$を通る.点$\mathrm{A}$は直線$\ell_1$と$x$軸の交点,点$\mathrm{B}$は直線$\ell_1$と直線$\ell_2$の交点,点$\mathrm{C}$は直線$\ell_2$と$y$軸の交点とする.このとき,三角形$\mathrm{ABC}$の面積$S$は$\displaystyle t=\frac{a}{b}$の関数で,
\[ S=\frac{[テ](t+[ト])t}{t+[ナ]} \]
となり,面積$S$は$t=[ニ]-\sqrt{[ヌ]}$で最小値をとる.
広島工業大学 私立 広島工業大学 2010年 第7問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とおく.このとき,$\mathrm{AB}=4$,$\mathrm{AC}=2$,$\mathrm{AD}=\mathrm{BD}$とする.

(1)辺$\mathrm{BC}$の長さを求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
日本福祉大学 私立 日本福祉大学 2010年 第3問
$\triangle \mathrm{ABC}$において線分$\mathrm{AB}$を$3:2$に内分する点を$\mathrm{M}$とし,線分$\mathrm{AC}$の中点を$\mathrm{N}$とする.また,$2$直線$\mathrm{CM}$と$\mathrm{BN}$の交点を$\mathrm{P}$とし,直線$\mathrm{AP}$と辺$\mathrm{BC}$の交点を$\mathrm{Q}$とする.

(1)$\overrightarrow{\mathrm{CM}}$を,$\overrightarrow{\mathrm{CA}}$と$\overrightarrow{\mathrm{CB}}$で表せ.
(2)$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{AQ}}$をそれぞれ,$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$で表せ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。