タグ「三角形」の検索結果

152ページ目:全1576問中1511問~1520問を表示)
北海学園大学 私立 北海学園大学 2010年 第2問
座標平面上に

円$C:x^2+y^2=10$
直線$\ell:y=-x+4$

があり,円$C$と直線$\ell$の交点を$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$とする.ただし,$x_1>x_2$とする.

(1)$\mathrm{P}$と$\mathrm{Q}$の座標をそれぞれ求めよ.また,線分$\mathrm{PQ}$の長さを求めよ.
(2)$\mathrm{P}$,$\mathrm{Q}$における円$C$の接線をそれぞれ$\ell_1$,$\ell_2$とおく.$\ell_1$と$\ell_2$の方程式を求めよ.また,$\ell_1$,$\ell_2$の交点$\mathrm{R}$の座標と線分$\mathrm{PR}$の長さを求めよ.
(3)原点$\mathrm{O}$と直線$\ell$の距離$d$を求めよ.また,三角形$\mathrm{OPQ}$の面積$S$を求めよ.
北海学園大学 私立 北海学園大学 2010年 第4問
三角形$\mathrm{ABC}$において$\mathrm{AB}=2$,$\mathrm{CA}=3$とする.この三角形の外接円の中心を$\mathrm{O}$,辺$\mathrm{AB}$と$\mathrm{CA}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.また,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OA}}=s \overrightarrow{a}+t \overrightarrow{b}$,$\angle \mathrm{CAB}=\theta$とする.ただし,$s,\ t$は実数とする.

(1)ベクトル$\overrightarrow{\mathrm{OM}}$と$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$,$t$の式で表せ.また,内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$\theta$の式で表せ.
(2)$\mathrm{BC}=4$のとき,$\cos \theta$,$s$,$t$の値をそれぞれ求めよ.
(3)$\displaystyle s=\frac{2}{3}$のとき,$t$と$\cos \theta$の値を求めよ.
北海学園大学 私立 北海学園大学 2010年 第1問
次の各問いに答えよ.

(1)放物線$C:y=x^2+ax+b$は$2$点$(1,\ 0)$,$(2,\ -3)$を通る.$a$と$b$の値を求め,$C$の頂点の座標,及び$C$と$x$軸との共有点の座標を求めよ.
(2)不等式$2 \cos^2 \theta+3 \cos \theta-2 \leqq 0$をみたす$\theta$の値の範囲を求めよ.ただし,$0 \leqq \theta<2\pi$とする.
(3)三角形$\mathrm{ABC}$において$\mathrm{AB}=7$,$\mathrm{BC}=6$,$\mathrm{CA}=5$のとき,$\cos \angle \mathrm{ABC}$の値,三角形$\mathrm{ABC}$の面積,外接円の半径をそれぞれ求めよ.
北海学園大学 私立 北海学園大学 2010年 第1問
次の各問いに答えよ.

(1)放物線$C:y=x^2+ax+b$は$2$点$(1,\ 0)$,$(2,\ -3)$を通る.$a$と$b$の値を求め,$C$の頂点の座標,及び$C$と$x$軸との共有点の座標を求めよ.
(2)不等式$2 \cos^2 \theta+3 \cos \theta-2 \leqq 0$をみたす$\theta$の値の範囲を求めよ.ただし,$0 \leqq \theta<2\pi$とする.
(3)三角形$\mathrm{ABC}$において$\mathrm{AB}=7$,$\mathrm{BC}=6$,$\mathrm{CA}=5$のとき,$\cos \angle \mathrm{ABC}$の値,三角形$\mathrm{ABC}$の面積,外接円の半径をそれぞれ求めよ.
北海学園大学 私立 北海学園大学 2010年 第5問
三角形$\mathrm{ABC}$において$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{a}$,$\mathrm{CA}=2$,$\angle \mathrm{BAC}=\theta$とする.次の問いに答えよ.

(1)$\cos \theta$を$a$の式で表せ.また,$a$の値の範囲を求めよ.
(2)三角形$\mathrm{ABC}$の面積が最大となるような$a$の値を求めよ.また,このときの外接円の半径$R$と内接円の半径$r$をそれぞれ求めよ.
(3)上の$(2)$が成り立つとき,三角形$\mathrm{ABC}$の外接円の弧$\mathrm{CA}$上の点$\mathrm{D}$によってできる四角形$\mathrm{ABCD}$の面積の最大値を求めよ.ただし,弧$\mathrm{CA}$上には点$\mathrm{B}$がないものとする.
東北学院大学 私立 東北学院大学 2010年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=8$,$\mathrm{BC}=7$,$\mathrm{CA}=5$とする.次の問いに答えよ.

(1)$\angle \mathrm{BAC}=\theta$とする.$\cos \theta$の値と$\triangle \mathrm{ABC}$の面積を求めよ.
(2)辺$\mathrm{BC}$上に点$\mathrm{P}$を$\mathrm{BP}=4$となるようにとる.$\angle \mathrm{BAP}=\alpha$,$\angle \mathrm{PAC}=\beta$とするとき,$\sin \alpha:\sin \beta$を整数の比で表せ.
東北学院大学 私立 東北学院大学 2010年 第4問
曲線$y=9-x^2$上に$2$点$\mathrm{A}(-3,\ 0)$,$\mathrm{P}(t,\ 9-t^2)$をとる.次の問いに答えよ.ただし,$-3<t<3$とする.

(1)$\mathrm{P}$から$x$軸に垂線$\mathrm{PQ}$をおろすとき,$\triangle \mathrm{PAQ}$の面積の最大値と,そのときの$t$の値を求めよ.
(2)点$\mathrm{P}$におけるこの曲線の接線と原点との距離が$3$であるとき,$t$の値を求めよ.
早稲田大学 私立 早稲田大学 2010年 第3問
$1$辺の長さが$1$(メートル)の正三角形の紙がある.この三角形の$3$頂点を$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とする.辺$\mathrm{BC}$上の点$\mathrm{P}$と辺$\mathrm{AB}$上の点$\mathrm{Q}$を次のようにとる.

点$\mathrm{Q}$を通るある直線を折り目としてこの紙を折り曲げるときに点$\mathrm{A}$は点$\mathrm{P}$に重なる.

ここで,$\mathrm{BP}=x$(メートル),$\mathrm{PQ}=y$(メートル)とおくとき,
\[ x^2-([テ]-y)x+[ト]-[ナ]y=0 \]
が成り立つ.これを$x$についての方程式とみると,$0 \leqq x \leqq 1$であるから
\[ [ニ]+[ヌ] \sqrt{[ネ]} \leqq y \leqq 1 \]
となる.したがって,$\mathrm{AQ}$が最小となるのは,$y=[ニ]+[ヌ] \sqrt{[ネ]}$のときであり,このとき,$\angle \mathrm{BAP}=[ノ]^\circ$である.ただし,$[ネ]$はできる限り小さい自然数で答えること.
東北学院大学 私立 東北学院大学 2010年 第2問
一直線上にない$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.線分$\mathrm{AB}$を$3$等分した点を,点$\mathrm{A}$に近い方から$\mathrm{C}$,$\mathrm{D}$とする.また点$\mathrm{E}$,$\mathrm{F}$を$\overrightarrow{\mathrm{OE}}=2 \overrightarrow{\mathrm{OC}}$,$\overrightarrow{\mathrm{OF}}=l \overrightarrow{\mathrm{OD}}$を満たすものとする.

(1)$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)点$\mathrm{F}$が線分$\mathrm{BE}$上にあるとき$l$の値を求めよ.
(3)$(2)$のとき面積比$\triangle \mathrm{EOF}:\triangle \mathrm{BDF}$を求めよ.
自治医科大学 私立 自治医科大学 2010年 第9問
$3$直線$x+y+4=0$,$5x+y+a=0$($a$は実数),$3x-y+b=0$($b$は実数)の異なる$3$つの交点によって作られる三角形の重心の座標が$(-1,\ 1)$であるとき,$(a+b)$の値を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。