タグ「三角形」の検索結果

150ページ目:全1576問中1491問~1500問を表示)
千葉大学 国立 千葉大学 2010年 第9問
$a$を1より大きい実数とし,座標平面上に,点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$をとる.曲線$\displaystyle y=\frac{1}{x}$上の点$\displaystyle \mathrm{P} \left( p,\ \frac{1}{p} \right)$と,曲線$\displaystyle y=\frac{a}{x}$上の点$\displaystyle \mathrm{Q} \left( q,\ \frac{a}{q} \right)$が,3条件

(1)$p>0,\ q>0$
(2)$\angle \mathrm{AOP}<\angle \mathrm{AOQ}$
(3)$\triangle \mathrm{OPQ}$の面積は3に等しい

をみたしながら動くとき,$\tan \angle \mathrm{POQ}$の最大値が$\displaystyle \frac{3}{4}$となるような$a$の値を求めよ.
九州工業大学 国立 九州工業大学 2010年 第2問
実数$\displaystyle \theta \ \left( 0<\theta<\frac{\pi}{2} \right)$に対して行列$A$を
\[ A=\left( \begin{array}{rr}
\cos 2\theta & \sin 2\theta \\
-\sin 2\theta & \cos 2\theta
\end{array} \right) \]
とする.また,実数$k \ (k>0)$に対して,$x,\ y$は
\[ \left( \begin{array}{c}
x \\
y
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)+\left( \begin{array}{c}
0 \\
k
\end{array} \right) \]
を満たす.そして,$x,\ y,\ k$を用いて座標平面上の2点$\mathrm{P}(x,\ y)$,$\mathrm{Q}(0,\ k)$を定める.原点を$\mathrm{O}$とする.以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を$k,\ \tan \theta$を用いて表せ.
(2)$\angle \mathrm{OPQ}$を$\theta$を用いて表せ.
(3)$\triangle \mathrm{OPQ}$を$x$軸の周りに1回転させてできる立体の体積$V(\theta)$を求めよ.
(4)(3)で求めた$V(\theta)$について,$\displaystyle \lim_{\theta \to +0}\frac{\theta}{2\pi}V(\theta)$を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第1問
平面上に大きさが1のベクトル$\overrightarrow{a}$と大きさが2のベクトル$\overrightarrow{b}$があり,そのなす角が$60^\circ$である.いま,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AC}}=k \overrightarrow{a}+\overrightarrow{b} \ (k \neq -1)$となる$\triangle \mathrm{ABC}$がある.$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$の中点を$\mathrm{M}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{N}$とし,線分$\mathrm{AN}$と線分$\mathrm{CM}$の交点を$\mathrm{P}$とする.また,点$\mathrm{Q}$は2点$\mathrm{A},\ \mathrm{C}$を通る直線上にあり,$\overrightarrow{\mathrm{PQ}} \perp \overrightarrow{\mathrm{AB}}$をみたす.このとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{AQ}}=l \overrightarrow{\mathrm{AC}}$をみたす$l$を$k$を用いて表せ.
(3)点$\mathrm{Q}$が辺$\mathrm{AC}$上にあるとき,$k$の値の範囲を求めよ.
宮城教育大学 国立 宮城教育大学 2010年 第2問
4辺の長さが$\mathrm{AB}=a,\ \mathrm{BC}=b,\ \mathrm{CD}=c,\ \mathrm{DA}=d$である四角形$\mathrm{ABCD}$が円に内接している.$\mathrm{AC}=x,\ \mathrm{BD}=y$とおくとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$と$\triangle \mathrm{CDA}$に余弦定理を適用して,$x$を$a,\ b,\ c,\ d$で表せ.また$y$を$a,\ b,\ c,\ d$で表せ.
(2)$xy$を$a,\ b,\ c,\ d$で表すと,$xy=ac+bd$となる.このことを(1)を用いて示せ.
福岡教育大学 国立 福岡教育大学 2010年 第2問
次の問いに答えよ.

(1)恒等式$\displaystyle \frac{1}{2}(x+y+z)\{(x-y)^2+(y-z)^2+(z-x)^2\}=x^3+y^3+z^3-3xyz$が成り立つことを示せ.
(2)$a \geqq 0,\ b \geqq 0,\ c \geqq 0$のとき,$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$が成り立つことを示せ.また,等号が成り立つのは$a=b=c$のときであることを示せ.
(3)一辺の長さがそれぞれ$a,\ b,\ c$の三角形の面積は$\sqrt{s(s-a)(s-b)(s-c)}$で与えられることが知られている.ただし,$\displaystyle s=\frac{a+b+c}{2}$とする.三辺の長さの和が$2s \ (s>0)$であるような三角形の面積は$\displaystyle \frac{s^2}{3 \sqrt{3}}$以下であることを示せ.また,面積が$\displaystyle \frac{s^2}{3 \sqrt{3}}$となるのは,三角形が正三角形のときであることを示せ.
山梨大学 国立 山梨大学 2010年 第6問
行列$A=\left( \begin{array}{cc}
\displaystyle\frac{3}{2} & -\displaystyle\frac{\sqrt{3}}{2} \\
\displaystyle\frac{\sqrt{3}}{2} & \displaystyle\frac{3}{2}
\end{array} \right)$と点$\mathrm{O}(0,\ 0)$,点$\mathrm{X}_0(1,\ 0)$がある.行列$A$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_1$へ移り,行列$A^2$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_2$へ移るものとする.以下同様に正の整数$n$について,行列$A^n$で表される移動によって点$\mathrm{X}_0$は点$\mathrm{X}_n$へ移るものとする.

(1)行列$A$は,$\alpha>0$と$\displaystyle 0<\theta<\frac{\pi}{2}$を使って$A=\alpha \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$と変形できる.$\alpha$と$\theta$の値を求めよ.
(2)$\triangle \mathrm{OX}_0 \mathrm{X}_1$の面積$S_1$を求めよ.
(3)四角形$\mathrm{OX}_0 \mathrm{X}_1 \mathrm{X}_2$の面積$S_2$を求めよ.
(4)$1 \leqq n<12$とする.線分$\mathrm{OX}_0$,$\mathrm{X}_0 \mathrm{X}_1$,$\cdots$,$\mathrm{X}_{n-1} \mathrm{X}_n$,$\mathrm{X}_n \mathrm{O}$で囲まれる部分の面積$S_n$を$n$を使って表せ.
鳴門教育大学 国立 鳴門教育大学 2010年 第4問
$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の中点をそれぞれ,$\mathrm{L}$,$\mathrm{M}$,$\mathrm{N}$とする.頂点$\mathrm{A}$から辺$\mathrm{BC}$またはその延長上に下ろした垂線を$\mathrm{AH}$とする.次を証明せよ.

(1)$\angle \mathrm{LHN}=\angle \mathrm{A}$
(2)$4$点$\mathrm{L}$,$\mathrm{M}$,$\mathrm{N}$,$\mathrm{H}$は同一円周上にある.
東京海洋大学 国立 東京海洋大学 2010年 第4問
三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{Q}$,辺$\mathrm{OB}$を$2:1$に内分する点を$\mathrm{R}$,辺$\mathrm{AB}$の中点を$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{PR}} \perp \overrightarrow{\mathrm{QS}}$となるための条件を$|\overrightarrow{a}|$,$|\overrightarrow{b}|$と内積$\overrightarrow{a} \cdot \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{PR}} \perp \overrightarrow{\mathrm{QS}}$かつ$|\overrightarrow{a}|=1$のとき,$|\overrightarrow{b}|$のとりうる値の範囲を求めよ.
早稲田大学 私立 早稲田大学 2010年 第2問
$x$-$y$平面上の$3$点を
\[ \mathrm{A}(0,\ 9),\quad \mathrm{B}(-3,\ 0),\quad \mathrm{C}(2,\ 0) \]
とし,原点を$\mathrm{O}$とする.このとき,次の各問に答えよ.空欄にあてはまる最もかんたんな数値を解答欄に記入せよ.

(1)$\mathrm{AC}$を$3:1$に内分する点を$\mathrm{D}$とし,$\mathrm{BD}$が$y$軸と交わる点を$\mathrm{E}$とするとき,$\mathrm{OE}:\mathrm{EA}=[ ]:[ ]$である.
(2)$\mathrm{CE}$を延長して,$\mathrm{AB}$と交わる点を$\mathrm{F}$とするとき,$\triangle \mathrm{AFC}$の面積は,$\triangle \mathrm{ABC}$の面積の$\displaystyle\frac{[ ]}{[ ]}$である.
早稲田大学 私立 早稲田大学 2010年 第2問
関数$f(x)$は次の等式を満たす.
\[ f(x) = \int_{-1}^1 xf(t)\, dt + 1 \]
次の問に答えよ.

(1)関数$f(x)$を求めよ.
(2)$y=f(x)$のグラフと,点P$(0,\ p)$を中心とする半径$1$の円が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わるとき,$p$が取り得る値の範囲を求めよ.
(3)(2)において,$\triangle \mathrm{ABP}$の面積$S$を$p$を用いて表せ.
(4)(2)において,$\angle \mathrm{APB} = \displaystyle\frac{2\pi}{3}$となるような$p$の値を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。