タグ「三角形」の検索結果

145ページ目:全1576問中1441問~1450問を表示)
三重大学 国立 三重大学 2010年 第2問
平面上の点A$(-3,\ -1)$,B$(-1,\ -2)$,C$(3,\ 1)$,D$(0,\ 5)$を考える.またEを線分ACとBDの交点とする.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$の大きさおよび$\cos \angle\text{BAC}$の値を求めよ.
(2)$\overrightarrow{\mathrm{BD}}=\alpha \overrightarrow{\mathrm{BA}}+\beta \overrightarrow{\mathrm{BC}}$を満たす定数$\alpha,\ \beta$を求めよ.また比$\text{AE}:\text{EC}$を求めよ.
(3)$\triangle$ABEと$\triangle$CDEの面積の和を$S_1$,$\triangle$BCEと$\triangle$DAEの面積の和を$S_2$とするとき,比$S_1:S_2$を求めよ.
徳島大学 国立 徳島大学 2010年 第4問
下の図の三角柱OAB-CDEにおいて,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおき,
\begin{align}
& |\overrightarrow{a}|=\sqrt{3},\quad |\overrightarrow{b}|=\sqrt{5},\quad |\overrightarrow{c}|=4 \nonumber \\
& \overrightarrow{a} \cdot \overrightarrow{b} =1,\quad \overrightarrow{a} \cdot \overrightarrow{c}=\overrightarrow{b} \cdot \overrightarrow{c}=0 \nonumber
\end{align}
とする.辺AD,BE上にそれぞれ点P,Qをとり,$\text{AP}=s,\ \text{BQ}=t$とおく.

(1)$\overrightarrow{\mathrm{OP}},\ \overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$s,\ t$を用いて表せ.
(2)$\text{OP} \perp \text{PQ}$となるとき,$t$を$s$を用いて表せ.
(3)$\triangle$OPQが$\text{OP}=\text{PQ}$の直角二等辺三角形となるように,$s,\ t$の値を定めよ.

\setlength\unitlength{1truecm}

(図は省略)
三重大学 国立 三重大学 2010年 第3問
平面上の点A$(-3,\ -1)$,B$(-1,\ -2)$,C$(3,\ 1)$,D$(0,\ 5)$を考える.またEを線分ACとBDの交点とする.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$の大きさおよび$\cos \angle\text{BAC}$の値を求めよ.
(2)$\overrightarrow{\mathrm{BD}}=\alpha \overrightarrow{\mathrm{BA}}+\beta \overrightarrow{\mathrm{BC}}$を満たす定数$\alpha,\ \beta$を求めよ.また比$\text{AE}:\text{EC}$を求めよ.
(3)$\triangle$ABEと$\triangle$CDEの面積の和を$S_1$,$\triangle$BCEと$\triangle$DAEの面積の和を$S_2$とするとき,比$S_1:S_2$を求めよ.
三重大学 国立 三重大学 2010年 第3問
平面上の点A$(-3,\ -1)$,B$(-1,\ -2)$,C$(3,\ 1)$,D$(0,\ 5)$を考える.またEを線分ACとBDの交点とする.このとき次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$の大きさおよび$\cos \angle\text{BAC}$の値を求めよ.
(2)$\overrightarrow{\mathrm{BD}}=\alpha \overrightarrow{\mathrm{BA}}+\beta \overrightarrow{\mathrm{BC}}$を満たす定数$\alpha,\ \beta$を求めよ.また比$\text{AE}:\text{EC}$を求めよ.
(3)$\triangle$ABEと$\triangle$CDEの面積の和を$S_1$,$\triangle$BCEと$\triangle$DAEの面積の和を$S_2$とするとき,比$S_1:S_2$を求めよ.
宮崎大学 国立 宮崎大学 2010年 第3問
座標平面上に点A$(0,\ 2)$と曲線$C:y=x^2$がある.
曲線$C$上に点P$(a,\ a^2) \ (1 \leqq a <2)$をとる.また,点Pを通り傾き1の直線と曲線$C$との交点のうち,点Pと異なる点をQとする.$\triangle$PAQの面積を$S$とおくとき,次の各問に答えよ.

(1)$S$を,$a$を用いて表せ.
(2)$S$の最大値とそのときの$a$の値を求めよ.
(3)直線PQと曲線$C$で囲まれる部分の面積が,$S$と等しくなる$a$の値を求めよ.
熊本大学 国立 熊本大学 2010年 第1問
原点をOとし,空間内に3点A$(4,\ 0,\ 0)$,B$(1,\ 2,\ 0)$,C$(2,\ 1,\ 2)$をとる.線分BCを$t:(1-t) \ (0<t<1)$に内分する点をPとおく.このとき,以下の問いに答えよ.

(1)$\triangle$OAPの面積を最小にする$t$の値を求めよ.
(2)Cを通り,3点O,A,Pを通る平面に垂直な直線と$xy$平面との交点をDとする.Dが$\triangle$OABの内部にあるとき,$t$の範囲を求めよ.
宮崎大学 国立 宮崎大学 2010年 第3問
座標平面上に原点O$(0,\ 0)$と点A$(3,\ 0)$がある.自然数$n$に対して,点B$_n(0,\ n)$をとり,$\triangle$AB$_n$Oの境界を除いた内部に含まれる格子点の個数を$a_n$とする.ただし,$x$座標と$y$座標がともに整数の点を格子点という.このとき,次の各問に答えよ.

(1)$a_1,\ a_2,\ a_3$の値を求めよ.
(2)自然数$k$に対して,$n=3k$とする.このとき,$\triangle$AB$_n$Oの境界を除いた内部に含まれる格子点のうち,$x$座標が1であるものの個数を,$k$を用いて表せ.
(3)自然数$k$に対して,$a_{3k}$を,$k$を用いて表せ.
(4)$S_n=a_1+a_2+\cdots +a_n$とする.自然数$m$に対して,$S_{3m}$を,$m$を用いて表せ.
長崎大学 国立 長崎大学 2010年 第3問
$\displaystyle \angle \text{A}=\frac{\pi}{2},\ \angle \text{B}=\alpha$である$\triangle$ABCを考える.$\triangle$ABCの外接円の半径を$R$とする.この外接円上の点Pが,点Aを含まない弧BC上を動くものとする.$\displaystyle \angle \text{BAP}=\theta \ (0<\theta<\frac{\pi}{2})$とするとき,次の問いに答えよ.

(1)$\triangle$ABPの面積の最大値を$R,\ \alpha$を用いて表せ.
(2)$\triangle$BPCの面積を$R,\ \theta$を用いて表せ.
(3)$\displaystyle \alpha=\frac{\pi}{3}$とする.$\triangle$ABPと$\triangle$BPCの面積の和$S$の最大値を求めよ.
福井大学 国立 福井大学 2010年 第1問
平面上に$\text{OA}=\text{OB}=1$である鋭角二等辺三角形OABがある.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とし,$k=\overrightarrow{a} \cdot \overrightarrow{b}$とおく.点Aから辺OBに下ろした垂線とOBとの交点をMとし,Mから辺OAに下ろした垂線とOAとの交点をNとする.さらに,線分AMと線分BNの交点をPとするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OM}}=s\overrightarrow{b}$と$\overrightarrow{\mathrm{ON}}=t\overrightarrow{a}$を満たす実数$s,\ t$を$k$を用いて表せ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$k$を用いて表せ.
(3)Pが線分BNを$4:3$に内分するとき,$\triangle$OABは正三角形であることを示せ.
宮崎大学 国立 宮崎大学 2010年 第1問
座標平面上に原点O$(0,\ 0)$と点A$(3,\ 0)$がある.自然数$n$に対して,点B$_n(0,\ n)$をとり,$\triangle$AB$_n$Oの境界を除いた内部に含まれる格子点の個数を$a_n$とする.ただし,$x$座標と$y$座標がともに整数の点を格子点という.このとき,次の各問に答えよ.

(1)$a_1,\ a_2,\ a_3$の値を求めよ.
(2)自然数$k$に対して,$n=3k$とする.このとき,$\triangle$AB$_n$Oの境界を除いた内部に含まれる格子点のうち,$x$座標が1であるものの個数を,$k$を用いて表せ.
(3)自然数$k$に対して,$a_{3k}$を,$k$を用いて表せ.
(4)$S_n=a_1+a_2+\cdots +a_n$とする.自然数$m$に対して,$S_{3m}$を,$m$を用いて表せ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。