タグ「三角形」の検索結果

142ページ目:全1576問中1411問~1420問を表示)
九州大学 国立 九州大学 2010年 第3問
$xy$平面上に曲線$\displaystyle y =\frac{1}{x^2}$を描き,この曲線の第1象限内の部分を$C_1$,第2象限内の部分を$C_2$と呼ぶ.$C_1$上の点P$_1 \displaystyle \left( a,\ \frac{1}{a^2} \right)$から$C_2$に向けて接線を引き,$C_2$との接点をQ$_1$とする.次に点Q$_1$から$C_1$に向けて接線を引き,$C_1$との接点をP$_2$とする.次に点P$_2$から$C_2$に向けて接線を引き,接点をQ$_2$とする.以下同様に続けて,C$_1$上の点列P$_n$と$C_2$上の点列Q$_n$を定める.このとき,次の問いに答えよ.

(1)点Q$_1$の座標を求めよ.
(2)三角形P$_1$Q$_1$P$_2$の面積$S_1$を求めよ.
(3)三角形P$_n$Q$_n$P$_{n+1} \ (n = 1,\ 2,\ 3,\ \cdots)$の面積$S_n$を求めよ.
(4)級数$\displaystyle \sum_{n=1}^{\infty} S_n$の和を求めよ.
岩手大学 国立 岩手大学 2010年 第2問
座標平面上に$3$点$\mathrm{A}(1,\ 2)$,$\mathrm{B}(4,\ 11)$,$\mathrm{C}(-1,\ 6)$があるとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$のなす角$\theta$を求めよ.
(2)点$\mathrm{A}$を通り,ベクトル$\overrightarrow{\mathrm{AC}}$を方向ベクトルとする直線上の点を$\mathrm{D}$とする.$\triangle \mathrm{ABD}$の面積が$45$となる点$\mathrm{D}$の座標を求めよ.ただし,$\angle \mathrm{BAD}$は鋭角とする.
(3)線分$\mathrm{AB}$上の点を$\mathrm{E}$とするとき,$\angle \mathrm{ACE}$が$60^\circ$となる点$\mathrm{E}$の座標を求めよ.
金沢大学 国立 金沢大学 2010年 第1問
座標平面において,円$x^2+y^2=1$上の点P$(a,\ b) \ (0<b<1)$における接線を$\ell$とし,$\ell$と$x$軸の交点をQとする.点R$(4,\ 0)$と$\ell$の距離が2であるとき,次の問いに答えよ.

(1)点Pの座標$(a,\ b)$を求めよ.
(2)$\triangle$PQRの面積を求めよ.
金沢大学 国立 金沢大学 2010年 第2問
座標空間において,中心がA$(0,\ 0,\ a) \ (a>0)$で半径が$r$の球面
\[ x^2+y^2+(z-a)^2 = r^2 \]
は,点B$(\sqrt{5},\ \sqrt{5},\ a)$と点$(1,\ 0,\ -1)$を通るものとする.次の問いに答えよ.

(1)$r$と$a$の値を求めよ.
(2)点P$(\cos t,\ \sin t,\ -1)$について,ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を求めよ.さらに内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AP}}$を求めよ.
(3)$\triangle$ABPの面積$S$を$t$を用いて表せ.また,$t$が$0 \leqq t \leqq 2\pi$の範囲を動くとき,$S$の最小値と,そのときの$t$の値を求めよ.
横浜国立大学 国立 横浜国立大学 2010年 第2問
$\triangle \mathrm{ABC}$があり,$\mathrm{AB}=3$,$\mathrm{BC}=7$,$\mathrm{CA}=5$を満たしている.$\triangle \mathrm{ABC}$の内心を$\mathrm{I}$,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AI}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)辺$\mathrm{AB}$上に点$\mathrm{P}$,辺$\mathrm{AC}$上に点$\mathrm{Q}$を,$3$点$\mathrm{P}$,$\mathrm{I}$,$\mathrm{Q}$が一直線上にあるようにとるとき,$\triangle \mathrm{APQ}$の面積$S$のとりうる値の範囲を求めよ.
信州大学 国立 信州大学 2010年 第7問
座標平面に,一直線上にない3点O$(0,\ 0)$,P$(a,\ b)$,Q$(c,\ d)$がある.点P,Qは,
行列$\left( \begin{array}{cc}
1 & m-1 \\
m & 1
\end{array} \right)$によってそれぞれ点P$^\prime$,Q$^\prime$に移され,3点O,P$^\prime$,Q$^\prime$も一直線上にないとする.

(1)$\triangle$OPQの面積$S$が$\displaystyle S=\frac{1}{2}|ad-bc|$で与えられることを証明せよ.
(2)$\triangle$OP$^\prime$Q$^\prime$の面積が$\triangle$OPQの面積より大きくなるような定数$m$の範囲を求めよ.
東京大学 国立 東京大学 2010年 第4問
$\mathrm{O}$を原点とする座標平面上の曲線
\[ C:\quad y=\frac{1}{2}x+\sqrt{\frac{1}{4}x^2+2} \]
と,その上の相異なる$2$点$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$を考える.

(1)$\mathrm{P}_i \ (i=1,\ 2)$を通る$x$軸に平行な直線と,直線$y=x$との交点を,それぞれ$\mathrm{H}_i \ (i=1,\ 2)$とする.このとき$\triangle \mathrm{OP}_1 \mathrm{H}_1$と$\triangle \mathrm{OP}_2 \mathrm{H}_2$の面積は等しいこと示せ.
(2)$x_1<x_2$とする.このとき$C$の$x_1\leqq x\leqq x_2$の範囲にある部分と,線分$\mathrm{P}_1 \mathrm{O}$,$\mathrm{P}_2 \mathrm{O}$で囲まれる図形の面積を,$y_1$,$y_2$を用いて表せ.
東京大学 国立 東京大学 2010年 第5問
$C$を半径$1$の円周とし,$\mathrm{A}$を$C$上の$1$点とする.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$\mathrm{A}$を時刻$t=0$に出発し,$C$上を各々一定の速さで,$\mathrm{P}$,$\mathrm{Q}$は反時計回りに,$\mathrm{R}$は時計回りに,時刻$t=2\pi$まで動く.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の速さは,それぞれ$m$,$1$,$2$であるとする.(したがって,$\mathrm{Q}$は$C$をちょうど一周する.)ただし,$m$は$1\leqq m \leqq 10$をみたす整数である.$\triangle \mathrm{PQR}$が$\mathrm{PR}$を斜辺とする直角二等辺三角形となるような速さ$m$と時刻$t$の組をすべて求めよ.
千葉大学 国立 千葉大学 2010年 第2問
1辺の長さが2の正六角形$\mathrm{A}_1 \mathrm{A}_2 \mathrm{A}_3 \mathrm{A}_4 \mathrm{A}_5 \mathrm{A}_6$ を考える.さいころを3回投げ,出た目を順に$i,\ j,\ k$とするとき,$\triangle \mathrm{A}_i \mathrm{A}_j \mathrm{A}_k$の面積を2乗した値を得点とする試行を行う.ただし,$i,\ j,\ k$の中に互いに等しい数があるときは,得点は0であるとする.

(1)得点が0となる確率を求めよ.
(2)得点が27となる確率を求めよ.
(3)得点の期待値を求めよ.
千葉大学 国立 千葉大学 2010年 第3問
$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$から直線$\mathrm{BC}$に下ろした垂線の長さは1,頂点$\mathrm{B}$から直線$\mathrm{CA}$に下ろした垂線の長さは$\sqrt{2}$,頂点$\mathrm{C}$から直線$\mathrm{AB}$に下ろした垂線の長さは2である.このとき,$\triangle \mathrm{ABC}$の面積と,内接円の半径,および,外接円の半径を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。