タグ「三角形」の検索結果

138ページ目:全1576問中1371問~1380問を表示)
関西学院大学 私立 関西学院大学 2011年 第2問
座標空間において,原点を$\mathrm{O}$とし,点$\mathrm{A}(1,\ 0,\ 0)$をとる.また,$xy$平面上にあり,中心が原点,半径が$1$の円を$C$とするとき,以下の問いに答えよ.

(1)$C$の$y \geqq 0$の部分にある点$\mathrm{P}$について$\angle \mathrm{AOP}=t (0 \leqq t \leqq \pi)$とする.このとき,点$\mathrm{P}$の座標を$t$を用いて表せ.
(2)点$\mathrm{Q}$を$\overrightarrow{\mathrm{OQ}}=-\overrightarrow{\mathrm{OP}}$を満たす点とし,点$\mathrm{B}(\sqrt{3},\ 1,\ 1)$をとる.このとき,内積$\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{BQ}}$を求めよ.また,$|\overrightarrow{\mathrm{BP}}|^2=m-n \sin (t+\alpha)$となるような定数$\displaystyle m,\ n,\ \alpha \left( \text{ただし,} 0 \leqq \alpha \leqq \frac{\pi}{2} \right)$を求めよ.
(3)$\angle \mathrm{PBQ}=\theta$とおくとき,$\cos \theta$の最大値と最小値,およびそれらのときの$t$の値を求めよ.
(4)$\cos \theta$が上で求めた最小値をとるとき,三角形$\mathrm{PBQ}$の面積を求めよ.
津田塾大学 私立 津田塾大学 2011年 第2問
単位円上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標をそれぞれ$(-1,\ 0)$,$\displaystyle \left( \frac{1}{2},\ -\frac{\sqrt{3}}{2} \right)$,$\displaystyle \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$とする.単位円上の点$\mathrm{P}$が
\[ \triangle \mathrm{ABC} \text{の面積}:\triangle \mathrm{ABP} \text{の面積}=1:1+\sqrt{3} \]
をみたすとき,点$\mathrm{P}$の座標を求めよ.
津田塾大学 私立 津田塾大学 2011年 第1問
次の問に答えよ.

(1)$x>0$のとき,関数$\displaystyle f(x)=x^2+x+\frac{2}{x}+\frac{1}{2x^2}$の最小値を求めよ.
(2)$1$から$10$までの番号が書かれた$10$枚のカードから同時に$3$枚を取り出したとき,カードに書かれた$3$つの数字の積が$3$の倍数になる確率を求めよ.
(3)三角形$\mathrm{ABC}$で$\angle \mathrm{A}={75}^\circ$,$\mathrm{BC}=\sqrt{2}$,$\mathrm{AB}=\sqrt{3}-1$のとき,$\angle \mathrm{C}$,$\mathrm{AC}$を求めよ.
青山学院大学 私立 青山学院大学 2011年 第5問
曲線$y=e^{-x}$上の点$(1,\ e^{-1})$における接線と$x$軸の交点を$(a_1,\ 0)$とする.次に,$y=e^{-x}$上の点$(a_1,\ e^{-a_1})$における接線と$x$軸の交点を$(a_2,\ 0)$とする.以下,同様に$a_n (n=3,\ 4,\ 5,\ \cdots)$を定める.次の問に答えよ.

(1)$a_1$を求めよ.
(2)$a_n$を求めよ.
(3)曲線上の点$(a_n,\ e^{-a_n})$における接線と,直線$x=a_n$および$x$軸で囲まれた三角形の面積を$S_n$とする.$\displaystyle \sum_{n=1}^\infty S_n$を求めよ.
愛知学院大学 私立 愛知学院大学 2011年 第4問
三角形$\mathrm{ABC}$で$\angle \mathrm{B}={45}^\circ$,$\angle \mathrm{C}={60}^\circ$,$\mathrm{BC}=10$のとき,
\[ \sin A=\frac{\sqrt{2}+\sqrt{[ア]}}{[イ]} \]
で,$\mathrm{AB}$の長さは$[ウエ] \sqrt{[オ]}-[カ] \sqrt{[キ]}$,

$\mathrm{AC}$の長さは$[クケ] \sqrt{[コ]}-[サシ]$である.
吉備国際大学 私立 吉備国際大学 2011年 第2問
$\triangle \mathrm{ABC}$で,$\mathrm{AB}=8$,$\mathrm{BC}=7$,$\mathrm{CA}=6$とする.$\angle \mathrm{BAC}$の二等分線と$\mathrm{BC}$の交点を$\mathrm{D}$とし,$\triangle \mathrm{ABC}$の重心$\mathrm{G}$に対し,直線$\mathrm{AG}$と$\mathrm{BC}$の交点を$\mathrm{H}$とする.次の問題に答えよ.

(1)$\mathrm{BD}$の長さを求めよ.
(2)$\mathrm{DH}$の長さを求めよ.
(3)$\mathrm{AG}$の長さを求めよ.
首都大学東京 公立 首都大学東京 2011年 第3問
原点を$\mathrm{O}$とする座標平面上に点$\mathrm{A}(3,\ 0)$を中心とし半径が$r_1$の円$C_1$と,点$\mathrm{B}(1,\ 0)$を中心とし半径が$r_2$の円$C_2$がある.$C_1$上に$y$座標が正である点$\mathrm{P}_1$をとり,$\angle \mathrm{OAP}_1 = \theta$とする.$C_2$上に$y$座標が負である点$\mathrm{P}_2$を,ベクトル$\overrightarrow{\mathrm{AP}_1}$と$\overrightarrow{\mathrm{BP}_2}$が平行であるようにとるとき,以下の問いに答えなさい.

(1)$\mathrm{P}_1$,$\mathrm{P}_2$の座標を$r_1,\ r_2,\ \theta$でそれぞれ表しなさい.
(2)$r_1+r_2 < 2$とする.$\mathrm{P}_1$,$\mathrm{P}_2$を通る直線が$C_1$と$C_2$の両方に接するとき,$\cos \theta$を求めなさい.
(3)$(2)$の条件のもとで$\triangle \mathrm{OP}_1 \mathrm{P}_2$の面積を$r_1,\ r_2$で表しなさい.
首都大学東京 公立 首都大学東京 2011年 第2問
座標空間の3点A$(1,\ 2,\ 2)$,B$(2,\ 1,\ 1)$,C$(2,\ 4,\ 2)$を通る平面を$\alpha$とする.点D$(0,\ 2,\ 1)$を通り,ベクトル$\overrightarrow{a}=(1,\ 1,\ 1)$に平行な直線を$\ell_1$とする.また点Dを通り,ベクトル$\overrightarrow{b}=(-1,\ -1,\ 1)$に平行な直線を$\ell_2$とする.このとき,以下の問いに答えなさい.

(1)$\ell_1$と$\alpha$の交点をEとし,$\ell_2$と$\alpha$の交点をFとする.E,Fの座標を求めなさい.
(2)$\overrightarrow{\mathrm{DE}}$と$\overrightarrow{\mathrm{DF}}$のなす角を$\theta \ (0 \leqq \theta \leqq \pi)$とおくとき,$\cos \theta$の値を求めなさい.
(3)$\triangle$DEFの面積を求めなさい.
大阪市立大学 公立 大阪市立大学 2011年 第2問
座標空間を運動する$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の時刻$t$における座標をそれぞれ$(t,\ 0,\ t)$,$(\sqrt{2}t,\ 1-2t,\ \sqrt{2}(1-t))$,$(-t,\ -\sqrt{2}t,\ t)$とする.原点を$\mathrm{O}$と記すとき,次の問いに答えよ.ただし,$\displaystyle 0<t<\frac{1}{2}$とする.

(1)$\overrightarrow{\mathrm{OA}} \perp \overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OB}} \perp \overrightarrow{\mathrm{OC}}$を示せ.
(2)$\triangle \mathrm{ABC}$の面積$S(t)$は$t(1-2t)$であることを示せ.
(3)四面体$\mathrm{OABC}$の体積$V(t)$の$\displaystyle 0<t<\frac{1}{2}$における最大値を求めよ.
高崎経済大学 公立 高崎経済大学 2011年 第1問
以下の各問いに答えよ.

(1)次の方程式を解け.
\[ |x+3| = 2x \]
(2)$a$を素数とする.$2$次方程式$x^2 -ax+66 = 0$の$2$つの解のうち,ただ$1$つのみが素数であるとき,$a$の値を求めよ.
(3)$\triangle \mathrm{ABC}$において,$A = 60^\circ$,外接円の半径$R$が$7$のとき,$\mathrm{BC}$の長さを求めよ.
(4)$\log_{10} 2 = 0.3010,\ \log_{10} 3 = 0.4771$とする.$12^{20}$は何桁の整数か.
(5)$15$本のくじの中に当たりくじが$3$本ある.この中から$2$本のくじを同時に引くとき,少なくとも$1$本が当たる確率を求めよ.
(6)次の$3$点が同一直線上にあるように,$m,\ n$の値を定めよ.
\[ \mathrm{A}(2,\ -1,\ -2),\ \mathrm{B}(4,\ 2,\ 5),\ \mathrm{C}(m,\ -4,\ n) \]
(7)次の定積分を求めよ.
\[ \int_{-2}^2 |x-1|(x-1) \, dx \]
(8)四角形$\mathrm{ABCD}$において,$\mathrm{AB} = 5,\ \mathrm{BC} = 3,\ \mathrm{CD} = 7,\ B = 120^\circ,\ D = 60^\circ$とするとき,四角形$\mathrm{ABCD}$の面積$S$を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。