タグ「三角形」の検索結果

137ページ目:全1576問中1361問~1370問を表示)
大同大学 私立 大同大学 2011年 第6問
次の問いに答えよ.

(1)$2x^2-19x+a<0$をみたす実数$x$が存在するとき,定数$a$の値の範囲は$\displaystyle a<\frac{[ ]}{[ ]}$である.$2x^2-19x+a<0$をみたす整数$x$がただ$1$つ存在するとき,その整数$x$は$[ ]$であり,定数$a$の値の範囲は$[ ] \leqq a<[ ]$である.
(2)外接円の半径が$16$である$\triangle \mathrm{ABC}$において$\displaystyle \cos B=\frac{\sqrt{7}}{4}$,$\displaystyle \cos C=\frac{3 \sqrt{7}}{8}$とするとき,$\displaystyle \sin B=\frac{[ ]}{[ ]}$,$\mathrm{AC}=[ ]$,$\mathrm{BC}=[ ] \sqrt{[ ]}$である.
獨協大学 私立 獨協大学 2011年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=3$,$\mathrm{AC}=4$,$\angle \mathrm{ACB}={90}^\circ$とし,辺$\mathrm{AB}$上に点$\mathrm{D}$をとり$\mathrm{AD}=x$とする.点$\mathrm{D}$から$\mathrm{BC}$,$\mathrm{AC}$へ,それぞれ垂線$\mathrm{DE}$,$\mathrm{DF}$を下ろす.

(1)長方形$\mathrm{DECF}$の面積を変数$x$を使って表せ.
(2)長方形$\mathrm{DECF}$の面積が最大となるときの面積と$x$の値を求めよ.
大同大学 私立 大同大学 2011年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{\sqrt{2}+\sqrt{3}-\sqrt{6}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}}{[ ] \sqrt{[ ]}-[ ]}$

$\displaystyle \hspace{27mm} =\frac{[ ]+[ ] \sqrt{2}+[ ] \sqrt{3}+\sqrt{6}}{[ ]}$
(2)外接円の半径が$16$である$\triangle \mathrm{ABC}$において$\displaystyle \cos B=\frac{\sqrt{7}}{4}$,$\displaystyle \cos C=\frac{3 \sqrt{7}}{8}$とするとき,$\displaystyle \sin B=\frac{[ ]}{[ ]}$,$\mathrm{AC}=[ ]$,$\mathrm{BC}=[ ] \sqrt{7}$である.$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$の中点を$\mathrm{M}$とするとき,$\mathrm{AM}=[ ]$である.
(3)$10$個の製品の中に不良品が$3$個含まれている.これらから無作為に$4$個の製品を取り出すとき,含まれる不良品の個数を$X$で表す.$X=2$となる確率は$\displaystyle \frac{[ ]}{[ ]}$,$X=3$となる確率は$\displaystyle \frac{[ ]}{[ ]}$である.$X$の期待値は$\displaystyle \frac{[ ]}{[ ]}$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2011年 第2問
$t$を実数とし,空間内の点$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(5,\ 4,\ 7)$,$\mathrm{C}(t,\ t+2,\ 3t+5)$を考える.以下の問いに答えなさい.

(1)$\triangle \mathrm{ABC}$が二等辺三角形となるときの$t$の値を,小さい方から順にすべて書きなさい.
(2)$\triangle \mathrm{ABC}$が直角三角形となるときの$t$の値を,小さい方から順にすべて書きなさい.
千葉工業大学 私立 千葉工業大学 2011年 第4問
三角形$\mathrm{OAB}$は面積が$9 \sqrt{7}$で,$\mathrm{OA}=6$,$\mathrm{OB}=8$であり,$\angle \mathrm{AOB}$は鈍角である.辺$\mathrm{AB}$上に$2$点$\mathrm{L}$,$\mathrm{M}$があり,線分$\mathrm{OL}$上に点$\mathrm{N}$があって,
\[ \mathrm{AL}:\mathrm{LB}=1:3,\quad \mathrm{AM}:\mathrm{MB}=\mathrm{ON}:\mathrm{NL}=t:(1-t) \]
(ただし,$0<t<1$)が成り立っている.このとき,次の問いに答えよ.

(1)$\displaystyle \sin \angle \mathrm{AOB}=\frac{[ア] \sqrt{[イ]}}{[ウ]}$であり,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[エオ]$である.

(2)$\overrightarrow{\mathrm{ON}}$,$\overrightarrow{\mathrm{NM}}$は$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて


$\displaystyle \overrightarrow{\mathrm{ON}}=\frac{[カ]}{[キ]} t \overrightarrow{\mathrm{OA}}+\frac{[ク]}{[ケ]} t \overrightarrow{\mathrm{OB}}$

$\displaystyle \overrightarrow{\mathrm{NM}}=(1-\frac{[コ]}{[サ]}t) \overrightarrow{\mathrm{OA}}+\frac{[シ]}{[ス]} t \overrightarrow{\mathrm{OB}}$


と表される.
(3)$\overrightarrow{\mathrm{NM}}$が$\overrightarrow{\mathrm{AB}}$と垂直になるのは,$\displaystyle t=\frac{[セ]}{[ソ]}$のときである.このとき,三角形$\mathrm{NAB}$の面積は$[タ] \sqrt{[チ]}$である.
産業医科大学 私立 産業医科大学 2011年 第2問
原点を$\mathrm{O}$とする座標空間内の$3$点$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(0,\ b,\ 0)$,$\mathrm{C}(0,\ 0,\ c)$に対し,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\pi$とおく.ただし,$a>0$,$b>0$,$c>0$とする.次の問いに答えなさい.

(1)$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}+u \overrightarrow{\mathrm{OC}}$とおく.点$\mathrm{P}$が平面$\pi$上にあって,$\overrightarrow{\mathrm{OP}}$が平面$\pi$と垂直になるように,実数$s,\ t,\ u$の値をそれぞれ$a,\ b,\ c$を用いて表しなさい.
(2)線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,点$\mathrm{Q}$は$\overrightarrow{\mathrm{CQ}}=r \overrightarrow{\mathrm{CM}}$を満たす点であるとする.ベクトル$\overrightarrow{\mathrm{OQ}}$の大きさ$|\overrightarrow{\mathrm{OQ}}|$を最小にする実数$r$の値と,そのときの$|\overrightarrow{\mathrm{OQ}}|$の値を,それぞれ$a,\ b,\ c$を用いて表しなさい.
(3)$\triangle \mathrm{OAB}$,$\triangle \mathrm{OBC}$,$\triangle \mathrm{OCA}$の面積を,それぞれ$S_1,\ S_2,\ S_3$とするとき,$\triangle \mathrm{ABC}$の面積$S$を$S_1,\ S_2,\ S_3$を用いて表しなさい.
福岡大学 私立 福岡大学 2011年 第2問
次の$[ ]$をうめよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{AC}$を$3:2$に内分する点を$\mathrm{N}$,線分$\mathrm{BN}$と$\mathrm{CM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とするとき,ベクトル$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと,$\overrightarrow{\mathrm{AP}}=[ ]$となる.さらに,$\mathrm{AB}=9$,$\mathrm{AC}=6$,$\mathrm{AP}=4$のとき,$\overrightarrow{b}$と$\overrightarrow{c}$の内積$\overrightarrow{b} \cdot \overrightarrow{c}$の値は$[ ]$である.
(2)点$(2,\ -3)$を点$(1,\ -1)$に移し,点$(-1,\ 4)$を点$(7,\ -2)$に移す$1$次変換$f$を表す行列$A$を求めると,$A=[ ]$である.また,原点を中心として一定の角だけ回転する回転移動$g$が点$(3,\ 3)$を点$(1+2 \sqrt{2},\ 1-2 \sqrt{2})$に移すとき,$g$を表す行列$B$を求めると,$B=[ ]$である.
(3)数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$a_2=1$,$a_{n+2}=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定めるとき,$a_7,\ a_8$の値を求めると,$(a_7,\ a_8)=[ ]$である.また,$\displaystyle \sum_{k=1}^\infty \frac{a_k}{2^k}$の値は$[ ]$である.
大阪薬科大学 私立 大阪薬科大学 2011年 第1問
次の問いに答えなさい.

(1)$(x+y+1)^{10}$の展開式で,$x^5y^3$の係数は$[ ]$である.
(2)$1 \cdot 2+2 \cdot 3+3 \cdot 4+4 \cdot 5+\cdots +n(n+1)=[ ]$である.ただし,$n$は正の整数である.
(3)$\triangle \mathrm{ABC}$において,$\displaystyle \sin B \sin C=\frac{3bc}{4a^2}$が成り立つとき,$A=[ ]$である.ただし,$A=\angle \mathrm{CAB}$,$B=\angle \mathrm{ABC}$,$C=\angle \mathrm{BCA}$,また,$a=\mathrm{BC}$,$b=\mathrm{CA}$,$c=\mathrm{AB}$である.
(4)$a,\ b,\ s,\ t$を$1$でない正の実数とし,$\log_a s+\log_b t=3$,$\log_s a+\log_t b=4$が成り立つとき,$(\log_a s)(\log_b t)$の値は$[ ]$である.
(5)$x$を$0$でない実数とするとき,関数$\displaystyle f(x)=\left( x+\frac{1}{x} \right)^2-\left( x+\frac{1}{x} \right)$の最小値を調べなさい.
京都薬科大学 私立 京都薬科大学 2011年 第4問
四面体$\mathrm{OABC}$について,次の$[ ]$にあてはまる正の数を記入せよ.ただし,$[ア]:[イ]$,$[ウ]:[エ]$および$[オ]:[カ]$については,もっとも簡単な整数比で表すこと.

(1)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$,線分$\mathrm{OG}$を$3:2$に内分する点を$\mathrm{D}$,直線$\mathrm{BD}$と平面$\mathrm{AOC}$の交点を$\mathrm{E}$,直線$\mathrm{OE}$と直線$\mathrm{AC}$との交点を$\mathrm{F}$とする.このとき,
\[ \overrightarrow{\mathrm{OG}}=[ ] \overrightarrow{\mathrm{OA}}+[ ] \overrightarrow{\mathrm{OB}}+[ ] \overrightarrow{\mathrm{OC}} \]
となり,
\[ \overrightarrow{\mathrm{BD}}=[ ] \overrightarrow{\mathrm{OA}}-[ ] \overrightarrow{\mathrm{OB}}+[ ] \overrightarrow{\mathrm{OC}} \]
となる.また,$\mathrm{OE}:\mathrm{EF}=[ア]:[イ]$,$\mathrm{BD}:\mathrm{DE}=[ウ]:[エ]$であり,二つの四面体$\mathrm{ABFO}$と$\mathrm{CEFB}$の体積比は$[オ]:[カ]$である.
(2)$\angle \mathrm{COB}={30}^\circ$,$\angle \mathrm{AOC}={45}^\circ$,$\angle \mathrm{CAO}={60}^\circ$,$\mathrm{OA}=\sqrt{3}+1$,$\mathrm{BC}=\sqrt{2}$とすると,$\mathrm{OC}=[ ]$,$\mathrm{CA}=[ ]$であり,$\mathrm{OB}$は$[$*$]$または$[$**$]$である.ただし,$[$*$]>[$**$]$とする.
神戸薬科大学 私立 神戸薬科大学 2011年 第3問
以下の文中の$[ ]$の中にいれるべき数または式を求めて記入せよ.

(1)平面上にサイコロがある.サイコロの$4$つの側面のいずれかの面を$\displaystyle \frac{1}{4}$の確率で底面にする操作を考える.$1$の目が出ているサイコロに対してこの操作を$n$回繰り返す.このとき,以下の問に答えよ.ただし,$1$の目の裏面は$6$の目である.

(i) この操作を$n$回行ったとき,$1$か$6$の目が出ている確率を$P_n$とする.
$P_1=[ ]$,$P_2=[ ]$,$P_3=[ ]$である.
(ii) $P_n$を$n$の式で表すと,$P_n=[ ]$である.

(2)\begin{mawarikomi}{35mm}{
(図は省略)
}
$\triangle \mathrm{OAB}$は$\mathrm{OA}=\mathrm{AB}=1$,$\angle \mathrm{OAB}={90}^\circ$となる直角二等辺三角形である.$\angle \mathrm{BOA}$の二等分線上の点$\mathrm{C}$を$\mathrm{BC} \perp \mathrm{OC}$となるようにとる.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$として,以下の問に答えよ.

(i) $\overrightarrow{\mathrm{OC}}=[ ] \overrightarrow{a}+[ ] \overrightarrow{b}$である.
(ii) $\mathrm{AC}$の長さの$2$乗を求めると,$\mathrm{AC}^2=[ ]$である.

\end{mawarikomi}
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。