タグ「三角形」の検索結果

136ページ目:全1576問中1351問~1360問を表示)
北星学園大学 私立 北星学園大学 2011年 第4問
$\triangle \mathrm{ABC}$について,以下の問に答えよ.

(1)$\sin^2 B+\sin^2 C=\sin^2 A$のとき,$\angle \mathrm{A}$の大きさを求めよ.
(2)$\sin^2 B+\sin^2 C>\sin^2 A$のとき,$\angle \mathrm{A}$が鋭角であることを証明せよ.
北海道薬科大学 私立 北海道薬科大学 2011年 第2問
三角形$\mathrm{ABC}$があり,点$\mathrm{P}$は,$3 \overrightarrow{\mathrm{PB}}+4 \overrightarrow{\mathrm{PC}}=2 \overrightarrow{\mathrm{PA}}$を満たしている.

(1)ベクトル$\overrightarrow{\mathrm{AP}}$は
\[ \overrightarrow{\mathrm{AP}}=\frac{[ア]}{[イ]} \overrightarrow{\mathrm{AB}}+\frac{[ウ]}{[エ]} \overrightarrow{\mathrm{AC}} \]
であり,線分$\mathrm{BC}$と線分$\mathrm{AP}$との交点を$\mathrm{D}$とすると,$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{[オ]}{[カ]} \overrightarrow{\mathrm{AD}}$である.
(2)三角形$\mathrm{ABD}$の面積を$S_1$,三角形$\mathrm{CPD}$の面積を$S_2$とすると,$\displaystyle \frac{S_2}{S_1}=\frac{[キ]}{[クケ]}$である.
(3)三角形$\mathrm{ABC}$において,$\mathrm{AD}$が$\angle \mathrm{BAC}$の二等分線で,$\angle \mathrm{BAC}=60^\circ$とすると
\[ |\overrightarrow{\mathrm{AC}}|=\frac{[コ]}{[サ]} |\overrightarrow{\mathrm{AB}}| \]
であり
\[ |\overrightarrow{\mathrm{AP}}|=\frac{[シ] \sqrt{[ス]}}{[セ]} |\overrightarrow{\mathrm{AB}}| \]
となる.
北海道科学大学 私立 北海道科学大学 2011年 第8問
$A={60}^\circ$,$B={45}^\circ$,$a=\sqrt{6}$である三角形$\mathrm{ABC}$の外接円の半径は$[ ]$であり,$b=[ ]$である.
北海道科学大学 私立 北海道科学大学 2011年 第14問
$3$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(6,\ 0)$,$\mathrm{C}(7,\ 1)$を頂点とする三角形$\mathrm{ABC}$の重心は$[ ]$であり,$3$点を通る円の中心は$[ ]$である.
東北工業大学 私立 東北工業大学 2011年 第2問
三角形$\mathrm{ABC}$があり,各辺の長さは$\mathrm{BC}=2 \sqrt{13}$,$\mathrm{CA}=2 \sqrt{10}$,$\mathrm{AB}=2 \sqrt{5}$である.このとき,

(1)$\displaystyle \cos A=\frac{\sqrt{[ ]}}{10}$である.
(2)三角形$\mathrm{ABC}$の面積は$[ ]$である.
(3)頂点$\mathrm{A}$から辺$\mathrm{BC}$に垂線を引き,この垂線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とする.$\angle \mathrm{BAD}=\theta$とすれば,$\displaystyle \sin \theta=\frac{[ ] \sqrt{65}}{65}$である.
(4)辺$\mathrm{BC}$の中点を$\mathrm{E}$とすれば,線分$\mathrm{AE}$の長さは$\sqrt{[ ]}$である.
(5)$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{F}$とする.このとき,線分$\mathrm{CF}$の長さは$4 \sqrt{13}-2 \sqrt{[ ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2011年 第3問
円周を$8$等分する点$\mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_8$からいくつかの点を無作為に選ぶ.どの点も選ばれる確率は等しいとするとき,次の問に答えなさい.

(1)異なる$2$点を選ぶとき,この$2$点を端点とする線分が円の直径となる確率は$\displaystyle \frac{[ア]}{[イ]}$である.
(2)異なる$3$点を選ぶとき,この$3$点からなる三角形が直角二等辺三角形となる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)異なる$4$点を選ぶとき,この$4$点からなる四角形が正方形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
(4)異なる$3$点を選ぶとき,この$3$点からなる三角形が二等辺三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(5)異なる$5$点を選ぶとき,この$5$点からなる五角形を$F$とする.残りの$3$点のうち$2$点を端点とする線分がいずれも五角形$F$と交わる確率は$\displaystyle \frac{[コ]}{[サ]}$である.
京都女子大学 私立 京都女子大学 2011年 第2問
$\triangle \mathrm{ABC}$において,$3$辺の長さを$\mathrm{AB}=3$,$\mathrm{BC}=2$,$\mathrm{CA}=\sqrt{7}$とする.次の問に答えよ.

(1)$\angle \mathrm{B}$は何度か.また,$\triangle \mathrm{ABC}$の面積を求めよ.
(2)$\triangle \mathrm{ABC}$の内接円を$S_1$とするとき,その半径$r_1$を求めよ.
(3)辺$\mathrm{AB}$,$\mathrm{BC}$および円$S_1$に接する円を$S_2$とするとき,その半径$r_2$を求めよ.
中央大学 私立 中央大学 2011年 第2問
座標平面上に$2$点$\mathrm{A}(-2,\ 3)$,$\mathrm{B}(0,\ 1)$と放物線$y=x^2-8x+15$がある.点$\mathrm{P}$が放物線上の$1 \leqq x \leqq 7$の範囲を動くとき,以下の問いに答えよ.

(1)$\triangle \mathrm{PAB}$が$\mathrm{PA}=\mathrm{PB}$である二等辺三角形となるときの点$\mathrm{P}$の座標を求めよ.
(2)$\triangle \mathrm{PAB}$の面積が最小となるときの点$\mathrm{P}$の座標を求めよ.
久留米大学 私立 久留米大学 2011年 第3問
$x,\ y$は実数で,曲線$9x^2+16y^2-144=0$を$\ell$とする.

(1)曲線$\ell$上の点で,$x+y$の値の最大値は$[$4$]$である.
(2)座標平面上の第$1$象限において,曲線$\ell$上の点を$\mathrm{P}$とする.曲線$\ell$上の点$\mathrm{P}$における接線と,$x$軸,$y$軸とで囲まれる三角形の面積の最小値は$[$5$]$であり,このときの点$\mathrm{P}$の座標は$[$6$]$である.
久留米大学 私立 久留米大学 2011年 第7問
三角形$\triangle \mathrm{ABC}$の頂点の座標が$\mathrm{A}(0,\ 1)$,$\mathrm{B}(2,\ 3)$,$\mathrm{C}(4,\ 1)$であるとき,次の問いに答えよ.

(1)辺$\mathrm{AB}$,$\mathrm{AC}$の長さはそれぞれ,$\overline{\mathrm{AB}}=[$16$]$,$\overline{\mathrm{AC}}=[$17$]$である.
(2)三角形$\triangle \mathrm{ABC}$の面積は$[$18$]$である.
(3)角$\angle \mathrm{BAC}$の角度は$[$19$]$である.
(4)三角形$\triangle \mathrm{ABC}$に外接する円の半径は$[$20$]$である.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。