タグ「三角形」の検索結果

120ページ目:全1576問中1191問~1200問を表示)
愛知県立大学 公立 愛知県立大学 2012年 第2問
三角形ABCにおいて$\angle \text{A}=\theta,\ \angle \text{B}=2\theta$であるとする.このとき,以下の問いに答えよ.ただし,$\lceil \ \cdot \ \rfloor$はベクトルの内積を表す.

(1)$\displaystyle \frac{|\overrightarrow{\mathrm{AC}}|}{|\overrightarrow{\mathrm{BC}}|}$を,$\cos \theta$を用いて表せ.
(2)次式が最大となるときの$\cos \theta$を求めよ.
\[ \frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}|}+\frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BC}}|}+\frac{\overrightarrow{\mathrm{CB}} \cdot \overrightarrow{\mathrm{CA}}}{|\overrightarrow{\mathrm{CB}}||\overrightarrow{\mathrm{CA}}|} \]
(3)$\angle \text{B}$の二等分線と辺ACとの交点をDとしたとき,次式を満たす$\theta$を求めよ.
\[ \frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}|}+\frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}}{|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BC}}|}+\frac{\overrightarrow{\mathrm{CB}} \cdot \overrightarrow{\mathrm{CA}}}{|\overrightarrow{\mathrm{CB}}||\overrightarrow{\mathrm{CA}}|} = \frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}}{|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AD}}|}+\frac{\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BD}}}{|\overrightarrow{\mathrm{BA}}||\overrightarrow{\mathrm{BD}}|}+\frac{\overrightarrow{\mathrm{DB}} \cdot \overrightarrow{\mathrm{DA}}}{|\overrightarrow{\mathrm{DB}}||\overrightarrow{\mathrm{DA}}|} \]
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第6問
以下の問いに答えよ.

(1)$2$つの行列$M=\left( \begin{array}{cc}
p & q \\
r & s
\end{array} \right)$と$N=\left( \begin{array}{cc}
p & r \\
q & s
\end{array} \right)$が,
\[ M \left( \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right) N= \left( \begin{array}{cc}
0 & -1 \\
1 & 0
\end{array} \right) \]
をみたすのは,$p,\ q,\ r,\ s$の間にどのような関係が成り立つときか.
(2)行列$M=\left( \begin{array}{cc}
p & q \\
r & s
\end{array} \right)$が,(1)で求めた関係をみたしているとする.行列$M$の表す$1$次変換による,点$\mathrm{A}(q,\ -p)$の像を点$\mathrm{C}$,点$\mathrm{B}(s,\ -r)$の像を点$\mathrm{D}$とする.座標平面の原点を$\mathrm{O}$とするとき,三角形$\mathrm{OCD}$の面積を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2012年 第7問
原点$\mathrm{O}$を中心とする半径$1$の円において扇形$\mathrm{OAB}$を考える.ただし,点$\mathrm{A}$は$(1,\ 0)$であり,点$\mathrm{B}$は第$1$象限にあるとする.扇形$\mathrm{OAB}$の中心角は,$x$ラジアン$\displaystyle \left( 0<x<\frac{\pi}{2} \right)$であるとする.点$\mathrm{B}$から$\mathrm{OA}$におろした垂線を$\mathrm{BC}$,点$\mathrm{A}$における円の接線が,点$\mathrm{O}$と点$\mathrm{B}$を通る直線と交わる点を$\mathrm{D}$とする.以下の問いに答えよ.

(1)三角形$\mathrm{ODA}$,三角形$\mathrm{OAB}$,扇形$\mathrm{OAB}$の面積を,$x$を用いてそれぞれ表せ.
(2)不等式$\displaystyle \cos x<\frac{\sin x}{x}<1$が成り立つことを示せ.
(3)$\displaystyle \lim_{x \to +0}\frac{\sin x}{x}=1$を示せ.ただし,$x \to +0$は,$x$が正の値をとりながら限りなく$0$に近づくことを表す.
会津大学 公立 会津大学 2012年 第2問
$\triangle \mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$とし,辺$\mathrm{OB}$を$4:1$に内分する点を$\mathrm{D}$とする.線分$\mathrm{AD}$と線分$\mathrm{BC}$の交点を$\mathrm{E}$とする.このとき,以下の空欄をうめよ.

(1)$\mathrm{AE}:\mathrm{ED}=s:(1-s)$とおくとき,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$s$を用いて表すと,$\overrightarrow{\mathrm{OE}}=[ ]$である.
(2)$\mathrm{BE}:\mathrm{EC}=t:(1-t)$とおくとき,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$t$を用いて表すと,$\overrightarrow{\mathrm{OE}}=[ ]$である.
(3)(1)と(2)を比較して$s,\ t$を求め,$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{OE}}=[ ]$である.
名古屋市立大学 公立 名古屋市立大学 2012年 第4問
$xy$平面上において,原点$\mathrm{O}$を中心とする正六角形$\mathrm{ABCDEF}$の$3$つの頂点の座標が,$\mathrm{A}(0,\ 2)$,$\mathrm{B}(\sqrt{3},\ 1)$,$\mathrm{C}(\sqrt{3},\ -1)$であるとき,次の問いに答えよ.

(1)辺$\mathrm{CD}$の中点を$\mathrm{L}$,線分$\mathrm{AL}$の中点を$\mathrm{M}$とし,直線$\mathrm{FM}$と辺$\mathrm{BC}$の交点を$\mathrm{N}$とする.$\mathrm{FM}:\mathrm{MN}$,$\mathrm{BN}:\mathrm{NC}$の比の値をそれぞれ求めよ.
(2)$|\overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{FP}}|=|\overrightarrow{\mathrm{BF}}|$を満たす点$\mathrm{P}$の描く図形の方程式を求めよ.
(3)$\mathrm{BF}$上の点$\mathrm{Q}(q,\ 1)$が$-\sqrt{3} \leqq q \leqq \sqrt{3}$を満たす任意の点であるとき,$\triangle \mathrm{QCE}$の垂心$\mathrm{H}$の描く図形の方程式を求めよ.
横浜市立大学 公立 横浜市立大学 2012年 第1問
以下の問いに答えよ.

(1)$a$を正の定数として,関数$f(x)$を$f(x)=\log (\sqrt{a^2+x^2}-x)$とおく.$f(x)$を微分して,多項式
\[ f(0)+f^\prime(0)x+\frac{f^{\prime\prime}(0)}{2!}x^2+\frac{f^{\prime\prime\prime}(0)}{3!}x^3 \]
を求めよ.
(2)座標平面において,曲線$\displaystyle C:y=\sin x \left( 0<x<\frac{\pi}{2} \right)$上の点$\mathrm{P}(a,\ \sin a)$における$C$の法線が$x$軸と交わる点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$を直径とする円が,$x$軸と交わる$\mathrm{Q}$以外の点を$\mathrm{R}$とする.このとき,三角形$\mathrm{PQR}$の面積$S(a)$を求めよ.次に,$a$が動くとき,$S(a)$の最大値を求めよ.
(図は省略)
(3)数列$\{a_n\}$
\[ 1,\ \frac{1}{2},\ \frac{2}{1},\ \frac{1}{3},\ \frac{2}{2},\ \frac{3}{1},\ \frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1},\ \cdots \]
を次のような群に分け,第$m$群には$m$個の数が入るようにする.
$\displaystyle \sitabrace{\frac{1}{1}}_{第1群} \ \bigg| \ \sitabrace{\frac{1}{2},\ \frac{2}{1}}_{第2群} \ \bigg| \ \sitabrace{\frac{1}{3},\ \frac{2}{2},\ \frac{3}{1}}_{第3群} \ \bigg| \ \sitabrace{\frac{1}{4},\ \frac{2}{3},\ \frac{3}{2},\ \frac{4}{1}}_{第4群} \ \bigg| \ ,\ \cdots ,\ $

$\displaystyle \bigg| \ \sitabrace{\frac{1}{m},\ \frac{2}{m-1},\ \cdots ,\ \frac{m-1}{2},\ \frac{m}{1}}_{第m群} \ \bigg| \ ,\ \cdots$
このとき,数列$\{a_n\}$において,$\displaystyle \frac{q}{p}$は第何項か.ただし,$\displaystyle \frac{q}{p}$は,例えば$\displaystyle \frac{2}{4}=\frac{1}{2}$のように,約分しないものとする.次に,第$100$項$a_{100}$を求めよ.
(4)$2$次の正方行列$A$が
\[ A \left( \begin{array}{c}
3 \\
2
\end{array} \right)=\left( \begin{array}{c}
1 \\
1
\end{array} \right),\quad A \left( \begin{array}{c}
1 \\
1
\end{array} \right)=\left( \begin{array}{c}
3 \\
2
\end{array} \right) \]
をみたすとする.このとき,自然数$n$に対して$A^n \left( \begin{array}{c}
5 \\
3
\end{array} \right)$を求めよ.
(5)$\mathrm{AB}=\mathrm{AC}$,$\mathrm{BC}$の長さが$1$,$\angle \mathrm{A}$が$\displaystyle \frac{\pi}{5}$の二等辺三角形$\mathrm{ABC}$を考える.頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$から$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の二等分線を引き,対応する辺との交点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,三角関数の値
\[ \sin \left( \frac{\pi}{10} \right) \]
を求めよ.
(図は省略)
釧路公立大学 公立 釧路公立大学 2012年 第2問
以下の各問に答えよ.

(1)次の式の展開式における$x^3y^3$の項の係数を求めよ.$(x-2y)^6$
(2)アタリくじ$3$枚とハズレくじ$7$枚が入っている箱がある.この箱からくじを$3$枚同時に取り出し,取り出されたアタリくじ$1$枚について$500$円を受け取るゲームがある.このゲームの参加料が何円未満であれば,このゲームに参加することが得であるといえるか求めよ.
(3)$3$辺が$\mathrm{AB}=12$,$\mathrm{BC}=13$,$\mathrm{CA}=5$である$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の接点を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.$\mathrm{BP}$の長さと内接円の半径を求めよ.
福島県立医科大学 公立 福島県立医科大学 2012年 第2問
以下の各問いに答えよ.

(1)$e$は自然対数の底とし,$a$は正の実数とする.以下の問いに答えよ.

(i) $x>0$で定義された関数$f(x)=a \log x-x$の増減を調べ,極値を求めよ.
(ii) $\displaystyle \lim_{x \to \infty} x^a e^{-2x}=0$を示せ.
(iii) 極限値$\displaystyle \lim_{x \to \infty} \int_0^x t^2e^{-2t} \, dt$を求めよ.

(2)$0<t<\pi$とする.曲線$\displaystyle C:y=\sin \frac{x}{2} (0 \leqq x \leqq \pi)$上の点$\displaystyle \mathrm{P} \left( t,\ \sin \frac{t}{2} \right)$における$C$の接線を$\ell_1$,点$\mathrm{P}$と原点を通る直線を$\ell_2$とする.以下の問いに答えよ.

(i) 接線$\ell_1$と$x$軸との交点の$x$座標を$t$を用いて表せ.
(ii) $j=1,\ 2$について,直線$\ell_j$,$x$軸および直線$x=t$で囲まれた三角形を$x$軸のまわりに回転させてできた円錐の体積を$V_j$とする.また,曲線$C$,$x$軸および直線$x=t$で囲まれた図形を$x$軸のまわりに回転させてできた回転体の体積を$V$とする.$V_1$,$V_2$および$V$を$t$を用いて表せ.
(iii) 極限値$\displaystyle \lim_{\theta \to 0} \frac{\theta-\sin \theta}{\theta^3}$を求めよ.ただし,$\displaystyle \lim_{\theta \to 0} \frac{\sin \theta}{\theta}=1$は利用してよい.
京都府立大学 公立 京都府立大学 2012年 第2問
$\mathrm{O}$を原点とする$xyz$空間内に$2$点$\mathrm{A}(5,\ 3,\ -3)$,$\mathrm{B}(4,\ 2,\ -1)$をとる.中心が$\mathrm{C}(5,\ 2,\ -2)$,半径が$r$の球面を$S$とし,$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell$とする.$\mathrm{O}$から$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面に垂線$\mathrm{OH}$を下ろす.$\ell$と$S$が平面$z=1$で交点$\mathrm{D}$をもつ.以下の問いに答えよ.

(1)$r$の値を求めよ.
(2)$\overrightarrow{\mathrm{CD}}=s \overrightarrow{\mathrm{CA}}+t \overrightarrow{\mathrm{CB}}$となる実数$s,\ t$の値を求めよ.
(3)垂線$\mathrm{OH}$の長さを求めよ.
(4)$\triangle \mathrm{ACD}$の面積を求めよ.
京都大学 国立 京都大学 2011年 第2問
$a,\ b,\ c$を実数とし,$\mathrm{O}$を原点とする座標平面上において,行列$\left(
\begin{array}{ccc}
a & 1 \\
b & c
\end{array}
\right)$に
よって表される$1$次変換を$T$とする.この$1$次変換$T$が$2$つの条件

(1)点$(1,\ 2)$を点$(1,\ 2)$に移す
(2)点$(1,\ 0)$と点$(0,\ 1)$が$T$によって点$\mathrm{A}$,$\mathrm{B}$にそれぞれ移るとき,$\triangle \mathrm{OAB}$の面積が$\displaystyle\frac{1}{2}$である

を満たすとき,$a,\ b,\ c$を求めよ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。