タグ「三角形」の検索結果

104ページ目:全1576問中1031問~1040問を表示)
福井大学 国立 福井大学 2012年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,面$\mathrm{OAB}$上の点$\mathrm{P}$で$\mathrm{CP}+\mathrm{PG}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表し,$\mathrm{CP}_0+\mathrm{P}_0 \mathrm{G}$の値を求めよ.
東京農工大学 国立 東京農工大学 2012年 第1問
$a,\ b$は実数で$b>0$とする.行列
\[ A=\left( \begin{array}{cc}
a & b \\
-b & 1-a
\end{array} \right),\quad B=\left( \begin{array}{cc}
0 & 1 \\
1 & 0
\end{array} \right) \]
が$ABAB=E$を満たしている.ただし$E$は2次の単位行列とする.次の問いに答えよ.

(1)$b$を$a$の式で表せ.
(2)$n$を自然数とする.$A^n=E$を満たす最小の$n$を求めよ.
(3)座標平面上において,$a=2$のとき行列$A$の表す1次変換を$f$とおく.点$\mathrm{P}(1,\ 1)$が$f$によって移る点を$\mathrm{Q}$とし,$\mathrm{Q}$が$f$によって移る点を$\mathrm{R}$とする.このとき$\triangle \mathrm{PQR}$の面積$S$を求めよ.
福島大学 国立 福島大学 2012年 第2問
座標平面上の3点$\mathrm{A}(9,\ 12)$,$\mathrm{B}(0,\ 0)$,$\mathrm{C}(25,\ 0)$を頂点とする三角形$\mathrm{ABC}$および,三角形$\mathrm{ABC}$の内接円と外接円を考える.三角形$\mathrm{ABC}$の内接円は,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$とそれぞれ点$\mathrm{D},\ \mathrm{E},\ \mathrm{F}$で接する.また,三角形$\mathrm{ABC}$の内接円の中心と点$\mathrm{A}$を通る直線は,辺$\mathrm{BC}$と点$\mathrm{G}$で交わる.このとき,以下の問いに答えなさい.

(1)3辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めなさい.
(2)線分$\mathrm{AE}$の長さを求めなさい.
(3)三角形$\mathrm{ABC}$の内接円の半径と中心の座標を求めなさい.
(4)点$\mathrm{G}$の座標を求めなさい.
(5)三角形$\mathrm{ABC}$の外接円の方程式を求めなさい.
福井大学 国立 福井大学 2012年 第3問
$t$を$0 \leqq t \leqq \sqrt{3}$をみたす実数とし,座標空間内に点$\mathrm{P}(t,\ 0,\ \sqrt{3-t^2})$をとる.$\mathrm{P}$を通り$yz$平面に平行な平面を$\beta$とおく.3点$\mathrm{D}(0,\ 1,\ 0)$,$\mathrm{E}(0,\ -1,\ 0)$,$\mathrm{F}(-\sqrt{3},\ 0,\ 0)$に対し,$\beta$と直線$\mathrm{FD}$との交点を$\mathrm{Q}$,$\beta$と直線$\mathrm{FE}$との交点を$\mathrm{R}$とする.$\triangle \mathrm{PQR}$の面積を$S(t)$とおくとき,以下の問いに答えよ.ただし,$S(\sqrt{3})=0$とする.

(1)$S(t)$を$t$を用いて表せ.
(2)$t$が$0 \leqq t \leqq \sqrt{3}$の範囲を動くとき,$S(t)$の最大値を求めよ.
(3)$t$が$0 \leqq t \leqq \sqrt{3}$の範囲を動くとき,$\triangle \mathrm{PQR}$が通過してできる立体の体積$V$を求めよ.
福井大学 国立 福井大学 2012年 第1問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OD}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積を求めよ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,面$\mathrm{OAB}$上の点$\mathrm{P}$で$\mathrm{CP}+\mathrm{PG}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表し,$\mathrm{CP}_0+\mathrm{P}_0 \mathrm{G}$の値を求めよ.
山形大学 国立 山形大学 2012年 第1問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2012年 第2問
$xyz$空間内に四面体$\mathrm{PABC}$がある.$\triangle \mathrm{ABC}$は$xy$平面内にある鋭角三角形とし,頂点$\mathrm{P}$の$z$座標は正とする.$\mathrm{P}$から$xy$平面に下ろした垂線を$\mathrm{PH}$とし,$\mathrm{H}$は$\triangle \mathrm{ABC}$の内部にあるとする.$\mathrm{H}$から直線$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$に下ろした垂線をそれぞれ$\mathrm{HK}_1$,$\mathrm{HK}_2$,$\mathrm{HK}_3$とする.そのとき$\mathrm{PK}_1 \perp \mathrm{AB}$,$\mathrm{PK}_2 \perp \mathrm{BC}$,$\mathrm{PK}_3 \perp \mathrm{CA}$である.$\angle \mathrm{PK}_1 \mathrm{H}=\alpha_1$,$\angle \mathrm{PK}_2 \mathrm{H}=\alpha_2$,$\angle \mathrm{PK}_3 \mathrm{H}=\alpha_3$とし,$\triangle \mathrm{PAB}$,$\triangle \mathrm{PBC}$,$\triangle \mathrm{PCA}$の面積をそれぞれ$S_1,\ S_2,\ S_3$とする.

(1)$\triangle \mathrm{HAB}$の面積を$\alpha_1,\ S_1$を用いて表せ.
(2)3つのベクトル$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$は,大きさがそれぞれ$S_1,\ S_2,\ S_3$であり,向きがそれぞれ平面$\mathrm{PAB}$,平面$\mathrm{PBC}$,平面$\mathrm{PCA}$に垂直であるとする.ただし,$\overrightarrow{l_1}$,$\overrightarrow{l_2}$,$\overrightarrow{l_3}$の$z$成分はすべて正とする.このとき,$\overrightarrow{l_1}+\overrightarrow{l_2}+\overrightarrow{l_3}$の$z$成分は$\triangle \mathrm{ABC}$の面積に等しいことを示せ.
(3)3辺$\mathrm{AB},\ \mathrm{BC},\ \mathrm{CA}$の長さの比$\mathrm{AB}:\mathrm{BC}:\mathrm{CA}$を,$\alpha_1,\ \alpha_2,\ \alpha_3,\ S_1,\ S_2,\ S_3$を用いて表せ.
山形大学 国立 山形大学 2012年 第1問
単位円の円周を$6$等分する点を時計回りの順に$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$,$\mathrm{P}_5$,$\mathrm{P}_6$とする.さいころを投げて出た目$i$と点$\mathrm{P}_i$を対応させる.さいころを$3$回投げて出た目が全て異なる場合は対応する点を結ぶと三角形ができる.次の問に答えよ.

(1)$\triangle \mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_5$と$\triangle \mathrm{P}_1 \mathrm{P}_3 \mathrm{P}_5$の面積をそれぞれ求めよ.
(2)さいころを$3$回投げて,三角形ができる確率を求めよ.
(3)さいころを$3$回投げて,二等辺三角形(ただし正三角形は除く)ができる確率を求めよ.
(4)さいころを$3$回投げてできる図形の面積の期待値を求めよ.
山形大学 国立 山形大学 2012年 第4問
$k>0$とする.原点を$\mathrm{O}$とする座標平面において,2点$\mathrm{A},\ \mathrm{B}$は曲線$\displaystyle y=\frac{1}{k}x^2$上にあり,かつ$\triangle \mathrm{OAB}$は正三角形とする.また,$\triangle \mathrm{OAB}$の内接円を$S$とし,$\mathrm{C}$をその中心とする.このとき,次の問に答えよ.

(1)中心$\mathrm{C}$の座標を求めよ.
(2)円$S$の方程式を求めよ.
(3)$T$を中心$\mathrm{D}(3k,\ -2k)$,半径$k$の円とする.$T$上の点$\mathrm{P}$から円$S$へ2本の接線を引いて,その接点を$\mathrm{E},\ \mathrm{F}$とする.線分$\mathrm{CP}$の長さを$t$として,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$を$k$と$t$を用いて表せ.
(4)点$\mathrm{P}$が円$T$上を動くとき,内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{CF}}$の最大値と最小値を求めよ.
滋賀医科大学 国立 滋賀医科大学 2012年 第1問
$xyz$空間内の$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{p}=(x,\ y,\ z)$を考え,$\displaystyle \overrightarrow{p^\prime}=\frac{\overrightarrow{p}}{|\overrightarrow{p}|}$とおく.

(1)$\overrightarrow{p^\prime}$の大きさを求めよ.
(2)$\overrightarrow{p}$と$x$軸,$y$軸,$z$軸の正の向きとのなす角をそれぞれ$\alpha,\ \beta,\ \gamma$とおくとき,$\overrightarrow{p^\prime}=(\cos \alpha,\ \cos \beta,\ \cos \gamma)$を示せ.
(3)$\overrightarrow{p}=(3,\ 4,\ 12)$とする.頂点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(a_1,\ a_2,\ a_3)$,$\mathrm{B}(b_1,\ b_2,\ b_3)$の$\triangle \mathrm{OAB}$について,$\overrightarrow{a}=(a_1,\ a_2,\ a_3)$,$\overrightarrow{b}=(b_1,\ b_2,\ b_3)$はともに$\overrightarrow{p}$に垂直とする.$\triangle \mathrm{OAB}$の面積を$S$とおくとき,$xy$平面上の点$\mathrm{O}$,$\mathrm{A}^\prime(a_1,\ a_2,\ 0)$,$\mathrm{B}^\prime(b_1,\ b_2,\ 0)$が作る$\triangle \mathrm{OA}^\prime \mathrm{B}^\prime$の面積を$S$を用いて表せ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。