タグ「三角形」の検索結果

103ページ目:全1576問中1021問~1030問を表示)
島根大学 国立 島根大学 2012年 第1問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=5,\ \mathrm{CA}=8,\ \angle \mathrm{C}=60^\circ$とする.$\triangle \mathrm{ABC}$の外接円を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)円$\mathrm{O}$の半径を求めよ.
(3)$\triangle \mathrm{ABC}$と相似な$\triangle \mathrm{DEF}$に円$\mathrm{O}$が内接しているとき,$\triangle \mathrm{ABC}$と$\triangle \mathrm{DEF}$の相似比を求めよ.
島根大学 国立 島根大学 2012年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{BC}=5,\ \mathrm{CA}=8,\ \angle \mathrm{C}=60^\circ$とする.$\triangle \mathrm{ABC}$の外接円を$\mathrm{O}$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の面積を求めよ.
(2)円$\mathrm{O}$の半径を求めよ.
(3)$\triangle \mathrm{ABC}$と相似な$\triangle \mathrm{DEF}$に円$\mathrm{O}$が内接しているとき,$\triangle \mathrm{ABC}$と$\triangle \mathrm{DEF}$の相似比を求めよ.
島根大学 国立 島根大学 2012年 第4問
原点を中心とする半径1の円上の異なる3点P$_0(1,\ 0)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$を$y_1>0$かつ$\triangle$P$_0$P$_1$P$_2$が正三角形になるようにとる.このとき,次の問いに答えよ.

(1)P$_1$の座標$(x_1,\ y_1)$とP$_2$の座標$(x_2,\ y_2)$を求めよ.
(2)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$と$A \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$A$を求めよ.
(3)$B \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)$と$B \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$B$を求めよ.
(4)(2),(3)で求めた行列$A,\ B$と正の整数$n$に対して,$(AB+BABA)^n$を求めよ.
島根大学 国立 島根大学 2012年 第3問
原点を中心とする半径1の円上の異なる3点P$_0(1,\ 0)$,P$_1(x_1,\ y_1)$,P$_2(x_2,\ y_2)$を$y_1>0$かつ$\triangle$P$_0$P$_1$P$_2$が正三角形になるようにとる.このとき,次の問いに答えよ.

(1)P$_1$の座標$(x_1,\ y_1)$とP$_2$の座標$(x_2,\ y_2)$を求めよ.
(2)$A \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
1 \\
0
\end{array} \right)$と$A \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$A$を求めよ.
(3)$B \left( \begin{array}{c}
1 \\
0
\end{array} \right)=\left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)$と$B \left( \begin{array}{c}
x_1 \\
y_1
\end{array} \right)=\left( \begin{array}{c}
x_2 \\
y_2
\end{array} \right)$をみたす2次の正方行列$B$を求めよ.
(4)(2),(3)で求めた行列$A,\ B$と正の整数$n$に対して,$(AB+BABA)^n$を求めよ.
宇都宮大学 国立 宇都宮大学 2012年 第3問
1辺の長さが1の正三角形ABCと,線分BCを$1:2$に内分する点Dが与えられている.実数$x \ (0 \leqq x \leqq 1)$に対し,線分AB上の点Pと線分AC上の点Qを$\text{AP}=\text{CQ}=x$となるように定めるとき,次の問いに答えよ.

(1)線分ADの長さを求めよ.
(2)三角形DPQの面積$S$を$x$の式で表せ.
(3)(2)の$S$について,$S$の最大値と最小値を求めよ.
(4)(2)の$S$の値が$\displaystyle \frac{\sqrt{3}}{8}$となるとき,$x$の値を求めよ.
東京学芸大学 国立 東京学芸大学 2012年 第2問
原点を$\mathrm{O}$とする座標平面上の$2$点$\mathrm{A}(2,\ 0)$,$\mathrm{B}(0,\ 2)$に対して,線分$\mathrm{OA}$上の点$\mathrm{P}$と線分$\mathrm{OB}$上の点$\mathrm{Q}$を,直線$\mathrm{PQ}$が三角形$\mathrm{OAB}$の面積を二等分するようにとる.下の問いに答えよ.

(1)点$\mathrm{Q}$の$y$座標が$t$のとき,直線$\mathrm{PQ}$の方程式と$t$の値の範囲を求めよ.
(2)(1)で求めた範囲で$t$を動かすとき,直線$\mathrm{PQ}$が通る点全体の領域を求め,図示せよ.
室蘭工業大学 国立 室蘭工業大学 2012年 第4問
平面上の$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$は同一直線上にないものとし,$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{AC}}|=1$とする.また,$t$を正の実数とし,平面上の点$\mathrm{P}$を$\overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{AB}}+t \overrightarrow{\mathrm{AC}}$と定め,線分$\mathrm{AP}$と$\mathrm{BC}$の交点を$\mathrm{Q}$とする.

(1)$\overrightarrow{\mathrm{AQ}}$を$t$および$\overrightarrow{\mathrm{AB}},\ \overrightarrow{\mathrm{AC}}$を用いて表せ.
(2)三角形$\mathrm{ABP}$の面積を$t$と内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)$\overrightarrow{\mathrm{AC}} \perp \overrightarrow{\mathrm{CP}}$かつ点$\mathrm{Q}$が線分$\mathrm{BC}$を$1:2$に内分するとき,三角形$\mathrm{BPQ}$の面積を求めよ.
奈良教育大学 国立 奈良教育大学 2012年 第2問
三角形$\mathrm{ABC}$において,次の関係が成り立つとき,三角形$\mathrm{ABC}$は直角三角形,または,二等辺三角形であることを示せ.
\[ a \cos A=b \cos B \]
ただし,$a,\ b$はそれぞれ三角形$\mathrm{ABC}$の辺$\mathrm{BC}$,$\mathrm{AC}$の長さを表し,$A,\ B$はそれぞれ三角形$\mathrm{ABC}$の$\angle \mathrm{BAC},\ \angle \mathrm{ABC}$を表す.
小樽商科大学 国立 小樽商科大学 2012年 第1問
次の[ ]の中を適当に補いなさい.

(1)$0 \leqq \theta \leqq \pi$のとき,関数$y=(2 \sin \theta-3 \cos \theta)^2-(2 \sin \theta-3 \cos \theta)+1$の最大値$M$と最小値$m$を求めると,$(M,\ m)=[ ]$.
(2)$x^2-4x-3=0,\ x>0$のとき,$2x^4+0x^3+1x^2+2x+2012=p+q\sqrt{7}$を満たす整数$p,\ q$は$(p,\ q)=[ ]$.
(3)平面上に$\mathrm{A}(a,\ b)$,$\mathrm{B}(-2,\ 0)$,$\mathrm{C}(0,\ 0)$がある.点$\mathrm{M}$は線分$\mathrm{AB}$ \\
の中点で点$\mathrm{X}$は線分$\mathrm{AC}$を$(1-t):t$に内分する点である.ただし, \\
$\displaystyle -4<a<0,\ b>0,\ 0<t<\frac{1}{2}$とする.直線$\mathrm{MX}$と直線$\mathrm{BC}$の \\
交点を$\mathrm{P}$,線分$\mathrm{AP}$と直線$\mathrm{BX}$の交点を$\mathrm{Q}$とする.三角形$\mathrm{BCX}$の面積を$S_1$,三角形$\mathrm{XPQ}$の面積を$S_2$とおくと,$\displaystyle \frac{S_1}{S_2}=[ ]$.
\img{2_2_2012_1}{40}
福井大学 国立 福井大学 2012年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=\sqrt{2}$,$\mathrm{OC}=1$であり,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{2}$,$\displaystyle \angle \mathrm{AOC}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{BOC}=\frac{\pi}{4}$であるとする.また,3点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$を含む平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に下ろした垂線と$\alpha$との交点を$\mathrm{H}$,平面$\alpha$に関して$\mathrm{C}$と対称な点を$\mathrm{K}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b},\ \overrightarrow{b} \cdot \overrightarrow{c},\ \overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$\overrightarrow{\mathrm{OH}},\ \overrightarrow{\mathrm{OK}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とし,平面$\alpha$上の点$\mathrm{P}$で$\mathrm{GP}+\mathrm{PC}$を最小にする点を$\mathrm{P}_0$とする.このとき,$\overrightarrow{\mathrm{OP}}_0$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.また,点$\mathrm{P}_0$は$\triangle \mathrm{OAB}$の周または内部にあることを示せ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。