タグ「三角形」の検索結果

101ページ目:全1576問中1001問~1010問を表示)
佐賀大学 国立 佐賀大学 2012年 第5問
$\triangle \mathrm{ABC}$において,$\mathrm{OA}=a$,$\mathrm{OB}=b$,$\angle \mathrm{AOB}=\theta$とおく.ただし,$a \geqq b$および$0^\circ < \theta < 90^\circ$とする.点$\mathrm{B}$から辺$\mathrm{OA}$に下ろした垂線の足を$\mathrm{A}_1$とする.また点$\mathrm{A}_1$を通って辺$\mathrm{AB}$に平行な直線と,辺$\mathrm{OB}$との交点を$\mathrm{B}_1$とする.次に点$\mathrm{B}_1$から辺$\mathrm{OA}_1$に下ろした垂線の足を$\mathrm{A}_2$とし,点$\mathrm{A}_2$を通って辺$\mathrm{A}_1 \mathrm{B}_1$に平行な直線と,辺$\mathrm{OB}_1$との交点を$\mathrm{B}_2$とする.以下,この操作を続け,三角形の列
\[ \triangle \mathrm{OA}_1 \mathrm{B}_1,\ \triangle \mathrm{OA}_2 \mathrm{B}_2,\ \cdots,\ \triangle \mathrm{OA}_n \mathrm{B}_n \]
をとる.このとき,次の問いに答えよ.

(1)$\triangle \mathrm{OA}_n \mathrm{B}_n$は,$\triangle \mathrm{OAB}$に相似であることを示せ.
(2)$\displaystyle \frac{\mathrm{A}_n \mathrm{B}_n}{\mathrm{A}_{n-1} \mathrm{B}_{n-1}}$を$a,\ b,\ \theta$の式で表せ.
(3)$\triangle \mathrm{OA}_k \mathrm{B}_k$の面積を$S_k$とする.$a=2,\ b=1,\ \theta=30^\circ$のとき,$S_1+S_2+\cdots + S_n$を$n$の式で表せ.
九州工業大学 国立 九州工業大学 2012年 第3問
$\mathrm{O}$を原点とする座標平面上に点$\mathrm{P}_0(1,\ 1)$,$\mathrm{Q}_0(1,\ 0)$がある.ある$p \ (0<p<1)$に対して,点$\mathrm{P}_1(p,\ p)$,$\mathrm{Q}_1(p,\ 0)$を定め,さらに,自然数$n$について点$\mathrm{P}_{n+1}$,$\mathrm{Q}_{n+1}$を次のように定める.
\begin{itemize}
点$\mathrm{Q}_n$を通り直線$\mathrm{Q}_0 \mathrm{P}_1$と平行な直線と,直線$\mathrm{OP}_0$の交点を$\mathrm{P}_{n+1}$とする.
点$\mathrm{P}_{n+1}$を通り$y$軸と平行な直線と,$x$軸の交点を$\mathrm{Q}_{n+1}$とする.
\end{itemize}
また,$\triangle \mathrm{Q}_{n-1} \mathrm{P}_n \mathrm{Q}_n$の面積を$S_n$とするとき,以下の問いに答えよ.

(1)$S_1$を$p$を用いて表せ.
(2)点$\mathrm{Q}_{n-1}$の$x$座標を$q$とするとき,点$\mathrm{Q}_n$の$x$座標を$p,\ q$を用いて表せ.
(3)$S_n$を$p,\ n$を用いて表せ.
(4)$n$を定数として,$p$を$0<p<1$の範囲で動かすとき,$S_n$を最大にする$p$とそのときの$S_n$をそれぞれ$n$を用いて表せ.
(5)(4)で求めた$S_n$に対して,$\displaystyle \lim_{n \to \infty}nS_n$を求めよ.必要であれば,自然対数の底$e$について$\displaystyle \lim_{h \to 0}(1+h)^{\frac{1}{h}}=e$が成り立つことを用いてよい.

(図は省略)
岩手大学 国立 岩手大学 2012年 第1問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}_1(\sqrt{3},\ 1)$,$\mathrm{P}_2(\sqrt{3},\ 0)$をとる.点$\mathrm{P}_2$から線分$\mathrm{OP}_1$に引いた垂線と線分$\mathrm{OP}_1$との交点を$\mathrm{P}_3$とする.次に,点$\mathrm{P}_3$から線分$\mathrm{OP}_2$に引いた垂線と線分$\mathrm{OP}_2$との交点を$\mathrm{P}_4$とする.この操作を繰り返すことにより,点$\mathrm{P}_n$を定める.すなわち,点$\mathrm{P}_{n-1}$から$\mathrm{OP}_{n-2}$に引いた垂線と線分$\mathrm{OP}_{n-2}$との交点を$\mathrm{P}_n$とする.このとき,以下の問いに答えよ.

(1)三つの線分$\mathrm{P}_1 \mathrm{P}_2$,$\mathrm{P}_2 \mathrm{P}_3$,$\mathrm{P}_3 \mathrm{P}_4$の長さをそれぞれ求めよ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さを$n$を用いて表せ.
(3)三つの三角形$\mathrm{OP}_1 \mathrm{P}_2$,$\mathrm{OP}_2 \mathrm{P}_3$,$\mathrm{OP}_3 \mathrm{P}_4$の面積をそれぞれ求めよ.
(4)三角形$\mathrm{OP}_n \mathrm{P}_{n+1}$の面積を$n$を用いて表せ.
(5)三角形$\mathrm{OP}_n \mathrm{P}_{n+1}$の面積を$a_n$とおき,
\[ S_n=a_1+a_2+\cdots +a_n \]
と定義する.$S_n$は$2\sqrt{3}$以上にならないことを証明せよ.
新潟大学 国立 新潟大学 2012年 第3問
四面体$\mathrm{OABC}$において,$\mathrm{OA} \perp \mathrm{OB},\ \mathrm{OA} = 3,\ \mathrm{OB} = 4,\ \mathrm{OC} = 5$とする.$\triangle \mathrm{OAB}$の重心を$\mathrm{G}$とし,直線$\mathrm{CG}$は$\triangle \mathrm{OAB}$を含む平面に垂直とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{CG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{c}$および$\overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(3)四面体$\mathrm{OABC}$の体積を求めよ.
鹿児島大学 国立 鹿児島大学 2012年 第1問
次の各問いに答えよ.

(1)$\mathrm{KADAI}$という語の$5$文字を並べて得られる順列のうち,$2$つの$\mathrm{A}$が隣り合わないものの総数を求めよ.
(2)$x^2-9x+14>0$を満たさない整数$x$で,$3$の倍数でないものをすべて求めよ.
(3)三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{D}$,辺$\mathrm{AC}$の中点を$\mathrm{E}$とする.$\mathrm{BE}=\mathrm{CD}$ならば$\mathrm{AB}=\mathrm{AC}$であることを示せ.
秋田大学 国立 秋田大学 2012年 第2問
$\triangle$OABにおいて$\overrightarrow{\mathrm{OA}}=(-2,\ 1)$,$\overrightarrow{\mathrm{OB}}=(1,\ 3)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\theta$とする.このとき,次の問いに答えよ.

(1)$\cos \theta$の値を求めよ.
(2)$\triangle$OABの面積を求めよ.
(3)OAの中点をCとし,AB上に$\text{OM} \perp \text{BC}$となるように点Mをとる.$\text{AM}:\text{MB}$を求めよ.
香川大学 国立 香川大学 2012年 第1問
$\triangle$OABの辺OAを$1:2$に内分する点をC,辺OBを$3:2$に内分する点をDとする.$\displaystyle \overrightarrow{\mathrm{AE}}=\frac{5}{3}\overrightarrow{\mathrm{AD}}$をみたす点をEとし,直線OEと直線BCとの交点をFとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$\text{FC}:\text{CB}$を求めよ.
香川大学 国立 香川大学 2012年 第1問
$\triangle$OABの辺OAを$1:2$に内分する点をC,辺OBを$3:2$に内分する点をDとする.$\displaystyle \overrightarrow{\mathrm{AE}}=\frac{5}{3}\overrightarrow{\mathrm{AD}}$をみたす点をEとし,直線OEと直線BCとの交点をFとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$\text{FC}:\text{CB}$を求めよ.
香川大学 国立 香川大学 2012年 第1問
$\triangle$OABの辺OAを$1:2$に内分する点をC,辺OBを$3:2$に内分する点をDとする.$\displaystyle \overrightarrow{\mathrm{AE}}=\frac{5}{3}\overrightarrow{\mathrm{AD}}$をみたす点をEとし,直線OEと直線BCとの交点をFとする.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.このとき,次の問に答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(2)$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b}$で表せ.
(3)$\text{FC}:\text{CB}$を求めよ.
宮崎大学 国立 宮崎大学 2012年 第5問
次の各問に答えよ.
(図は省略)

(1)上図$\mathrm{I}$において,点$\mathrm{O}$を中心とする円の半径を$R$とする.この円の弦$\mathrm{XY}$上の任意の点を$\mathrm{P}$とするとき,等式
\[ \mathrm{OP}^2=R^2-\mathrm{XP} \cdot \mathrm{YP} \]
が成り立つことを示せ.
(2)上図$\mathrm{II}$の$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$,内心を$\mathrm{I}$とする.$\triangle \mathrm{ABC}$の外接円,内接円の半径をそれぞれ$R$,$r$とする.また,直線$\mathrm{AI}$と$\triangle \mathrm{ABC}$の外接円の,点$\mathrm{A}$と異なる交点を$\mathrm{D}$,$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{AB}$との接点を$\mathrm{E}$とする.このとき,次の$(ⅰ),\ (ⅱ),\ (ⅲ)$に答えよ.

(i) $\mathrm{DB}=\mathrm{DI}$であることを示せ.
(ii) $\mathrm{AI} \cdot \mathrm{DI}=2Rr$であることを示せ.
(iii) $\mathrm{OI}^2=R^2-2Rr$であることを示せ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。