タグ「三角形」の検索結果

100ページ目:全1576問中991問~1000問を表示)
東京医科歯科大学 国立 東京医科歯科大学 2012年 第2問
$a^2+b^2=1$を満たす正の実数$a,\ b$の組$(a,\ b)$の全体を$S$とする.$S$に含まれる$(a,\ b)$に対し,$xyz$空間内に3点P$(a,\ b,\ b)$,Q$(-a,\ b,\ b)$,R$(0,\ 0,\ b)$をとる.また原点をOとする.このとき以下の各問いに答えよ.

(1)三角形OPQを$x$軸のまわりに1回転してできる立体を$F_1$とする.$(a,\ b)$が$S$の中を動くとき,$F_1$の体積の最大値を求めよ.
(2)三角形PQRを$x$軸のまわりに1回転してできる立体を$F_2$とする.$\displaystyle a=b=\frac{1}{\sqrt{2}}$のとき,$F_2$の$xy$平面による切り口の周を$xy$平面上に図示せよ.
(3)三角形OPRを$x$軸のまわりに1回転してできる立体を$F_3$とする.$(a,\ b)$が$S$の中を動くとき,$F_3$の体積の最大値を求めよ.
九州工業大学 国立 九州工業大学 2012年 第2問
四面体OABCは$\displaystyle \text{OA}=1,\ \text{OB}=\sqrt{15},\ \text{OC}=2,\ \angle \text{AOB}=\frac{\pi}{2},\ \angle \text{AOC}=\frac{\pi}{3}$を満たしている.線分OAとOBを$s:1-s \ (0<s<1)$に内分する点をそれぞれP,Qとし,$\triangle$CPQの重心をGとする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c},\ \angle \text{BOC}=\theta \ (0<\theta < \pi)$として,次に答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$と$s$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OG}}$は平面ABCに垂直であるとする.

(3)$s$と$\cos \theta$の値を求めよ.
(4)線分OGとBCの長さ,および$\angle \text{BAC}$を求めよ.
(5)四面体OABCの体積$V$を求めよ.
弘前大学 国立 弘前大学 2012年 第3問
座標平面に点$\mathrm{E}(1,\ 0)$,$\mathrm{F}(1,\ 1)$,$\mathrm{F}^\prime(-5,\ 11)$がある.さらに点$\mathrm{E}^\prime$は第1象限にあり,$\mathrm{O}$を原点とするとき,三角形$\mathrm{OE}^\prime \mathrm{F}^\prime$は角$\mathrm{E}^\prime$が直角の二等辺三角形である.

(1)点$\mathrm{E}^\prime$の座標を求めよ.
(2)点$\mathrm{E}$を点$\mathrm{E}^\prime$に,点$\mathrm{F}$を点$\mathrm{F}^\prime$に移すような1次変換を$f$とする.$f$を表す行列を求めよ.
(3)座標平面に三角形$\mathrm{OPQ}$があり,(2)の1次変換$f$により点$\mathrm{P}$が点$\mathrm{P}^\prime$に,点$\mathrm{Q}$が点$\mathrm{Q}^\prime$に移るとする.三角形$\mathrm{OPQ}$と三角形$\mathrm{OP}^\prime \mathrm{Q}^\prime$は相似であることを示せ.
岩手大学 国立 岩手大学 2012年 第2問
座標空間内に3点A$(2,\ 2,\ 0)$,B$(0,\ 2,\ 2)$,C$(2,\ 0,\ 2)$がある.次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角$\theta$を求めよ.ただし,$0^\circ < \theta < 180^\circ$とする.
(2)$\triangle$ABCの面積を求めよ.
(3)原点Oから平面ABCに垂線をおろし,平面ABCとの交点をHとする.点Hは平面ABC上にあるから$\overrightarrow{\mathrm{OH}}=r\overrightarrow{\mathrm{OA}}+s\overrightarrow{\mathrm{OB}}+t\overrightarrow{\mathrm{OC}} \ (r+s+t=1)$と表すことができる.このとき,$r,\ s,\ t$を求めよ.
(4)四面体OABCの体積を求めよ.
(5)球$P$が四面体OABCのすべての面に接している.このとき,球$P$の半径を求めよ.
奈良女子大学 国立 奈良女子大学 2012年 第1問
$x$を正の実数とする.三角形$\mathrm{ABC}$において,$\mathrm{AB}=x,\ \mathrm{BC}=x+1,\ \mathrm{CA}=x+2$とする.次の問いに答えよ.

(1)$x$のとり得る値の範囲を求めよ.
(2)$\angle \mathrm{B}=\theta$とおくとき,$\cos \theta$を$x$を用いて表せ.
(3)三角形$\mathrm{ABC}$が鈍角三角形となる$x$の値の範囲を求めよ.
奈良女子大学 国立 奈良女子大学 2012年 第4問
三角形$\mathrm{ABC}$は各辺の長さが$1$の正三角形であるとする.辺$\mathrm{AB}$上に点$\mathrm{D}$,辺$\mathrm{BC}$上に点$\mathrm{E}$,辺$\mathrm{CA}$上に点$\mathrm{F}$を$\mathrm{AD}=\mathrm{BE}=\mathrm{CF}=x$となるようにとる.ただし$0<x<1$とする.次の問いに答えよ.

(1)三角形$\mathrm{ABC}$の内接円の半径を求めよ.
(2)三角形$\mathrm{DEF}$の外接円の半径$R$を$x$を用いて表せ.
(3)(2)で求めた$R$を最小にする$x$の値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2012年 第4問
円周上に4点A,B,C,Dが反時計回りに並んでいる.直線ABと直線DCの交点をE,線分ACとBDの交点をFとする.$\text{AB}=1,\ \text{BE}=3,\ \text{AE}=4$であり,$\triangle$DCFの面積は$\triangle$ABFの面積の4倍である.$\displaystyle \text{FA}=x,\ \text{FB}=y,\ \text{CE}=t,\ \frac{y}{x}=u$とおいて,以下の問いに答えよ.

(1)$\text{FC},\ \text{FD}$を$x,\ y$で表せ.
(2)$t$の値を求めよ.
(3)$u$の値を求めよ.
(4)面積の比の値$\displaystyle \frac{\triangle \text{AED}}{\triangle \text{ABF}}$を求めよ.
高知大学 国立 高知大学 2012年 第3問
点Oを中心とする半径1の円に内接する正十角形の隣り合う頂点をA,Bとする.また,$\angle \text{OAB}$の二等分線と直線OBの交点をCとする.次の問いに答えよ.

(1)$\triangle$ABCと$\triangle$OABは相似になることを示せ.
(2)辺ABの長さを求めよ.
(3)$\displaystyle \cos \frac{2\pi}{5}$を求めよ.
(4)半径1の円に内接する正五角形の一辺の長さを求めよ.
大分大学 国立 大分大学 2012年 第2問
三角形OABで$\displaystyle \overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\ |\overrightarrow{a}|=|\overrightarrow{b}|=1,\ \angle \text{AOB}=\frac{\pi}{6}$とする.このとき次の問いに答えよ.

(1)三角形OABの外接円の中心(外心)Qの位置ベクトル$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
(2)頂点OとAからそれぞれの対辺ABとOBに下ろした垂線の交点(垂心)をHとするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
(3)$|\overrightarrow{\mathrm{AB}}|$の値を求めよ.
(4)三角形OABの内接円の中心(内心)Pの位置ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$で表せ.
奈良女子大学 国立 奈良女子大学 2012年 第6問
$a$を実数とする.関数$y=|x-1|+|x-2|$と関数$y=x+a$のグラフをそれぞれ$G_1,\ G_2$とおく.$G_1$と$G_2$が交点を持つとする.次の問いに答えよ.

(1)$G_1$をかけ.
(2)$G_1$と$G_2$の囲む領域が三角形であるとする.このときの$a$の値の範囲を求め,三角形の面積$S_1$を$a$を用いて表せ.
(3)$G_1$と$G_2$の囲む領域が四角形であるとする.このときの$a$の値の範囲を求め,四角形の面積$S_2$を$a$を用いて表せ.
スポンサーリンク

「三角形」とは・・・

 まだこのタグの説明は執筆されていません。