タグ「三つ」の検索結果

1ページ目:全5問中1問~10問を表示)
岡山県立大学 公立 岡山県立大学 2016年 第1問
整数$1,\ 2,\ 3,\ 4,\ 5$から三つの整数を重複なく選び,それを並べて$3$桁の整数を作る.次の問いに答えよ.

(1)このような整数は何個あるか.
(2)このような整数をすべて足し合わせるといくらになるか.
(3)このような整数のうち,$2$の倍数は何個あるか.
(4)このような整数のうち,$3$の倍数は何個あるか.
(5)このような整数を重ねて$6$桁の整数を作る.例えば,$215$を重ねて$215215$とする.このようにしてできた$6$桁の整数は$7$の倍数であることを示せ.
広島大学 国立 広島大学 2015年 第4問
$\alpha,\ \beta$は$\alpha>0$,$\beta>0$,$\alpha+\beta<1$を満たす実数とする.三つの放物線
\[ C_1:y=x(1-x),\quad C_2:y=x(1-\beta-x),\quad C_3:y=(x-\alpha)(1-x) \]
を考える.$C_2$と$C_3$の交点の$x$座標を$\gamma$とする.また,$C_1$,$C_2$,$C_3$で囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$\gamma$を$\alpha,\ \beta$を用いて表せ.
(2)$S$を$\alpha,\ \beta$を用いて表せ.
(3)$\alpha,\ \beta$が$\displaystyle \alpha+\beta=\frac{1}{4}$を満たしながら動くとき,$S$の最大値を求めよ.
秋田県立大学 公立 秋田県立大学 2014年 第4問
平面上に三つの異なる定点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$がある.線分$\mathrm{AB}$の中点を$\mathrm{M}$とする.また,同じ平面上に動点$\mathrm{P}$があり,$\displaystyle \angle \mathrm{APB}=\frac{\pi}{2}$を満たす.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OM}}=\overrightarrow{m}$とする.以下の設問に答えよ.$(1)$は解答のみでよく,$(2)$,$(3)$は解答とともに導出過程も記述せよ.

(1)$\overrightarrow{m}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$|\overrightarrow{\mathrm{MP}}|$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=\sqrt{14}$,$\overrightarrow{a} \cdot \overrightarrow{b}=-6$が成り立つ.また,$\overrightarrow{a}$と$\overrightarrow{m}$のなす角を$\alpha$,$\overrightarrow{a}$と$\overrightarrow{\mathrm{MP}}$のなす角を$\beta$とする.ただし,$0 \leqq \alpha \leqq \pi$,$0 \leqq \beta \leqq \pi$とする.以下の設問$(ⅰ)$,$(ⅱ)$,$(ⅲ)$に答えよ.

(i) $\cos \alpha$の値を求めよ.
(ii) $\triangle \mathrm{OPA}$の面積が最大となるときの$\beta$の値を求めよ.
(iii) $\triangle \mathrm{OPA}$の面積の最大値を求めよ.
岩手大学 国立 岩手大学 2012年 第1問
座標平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{P}_1(\sqrt{3},\ 1)$,$\mathrm{P}_2(\sqrt{3},\ 0)$をとる.点$\mathrm{P}_2$から線分$\mathrm{OP}_1$に引いた垂線と線分$\mathrm{OP}_1$との交点を$\mathrm{P}_3$とする.次に,点$\mathrm{P}_3$から線分$\mathrm{OP}_2$に引いた垂線と線分$\mathrm{OP}_2$との交点を$\mathrm{P}_4$とする.この操作を繰り返すことにより,点$\mathrm{P}_n$を定める.すなわち,点$\mathrm{P}_{n-1}$から$\mathrm{OP}_{n-2}$に引いた垂線と線分$\mathrm{OP}_{n-2}$との交点を$\mathrm{P}_n$とする.このとき,以下の問いに答えよ.

(1)三つの線分$\mathrm{P}_1 \mathrm{P}_2$,$\mathrm{P}_2 \mathrm{P}_3$,$\mathrm{P}_3 \mathrm{P}_4$の長さをそれぞれ求めよ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さを$n$を用いて表せ.
(3)三つの三角形$\mathrm{OP}_1 \mathrm{P}_2$,$\mathrm{OP}_2 \mathrm{P}_3$,$\mathrm{OP}_3 \mathrm{P}_4$の面積をそれぞれ求めよ.
(4)三角形$\mathrm{OP}_n \mathrm{P}_{n+1}$の面積を$n$を用いて表せ.
(5)三角形$\mathrm{OP}_n \mathrm{P}_{n+1}$の面積を$a_n$とおき,
\[ S_n=a_1+a_2+\cdots +a_n \]
と定義する.$S_n$は$2\sqrt{3}$以上にならないことを証明せよ.
滋賀医科大学 国立 滋賀医科大学 2012年 第4問
赤色,青色,黄色の箱を各一箱,赤色,青色,黄色の球を各一個用意して,各球を球と同じ色の箱に入れる.この状態からはじめて,次の操作を$n$回($n \geqq 1$)行う. \\
(操作) \ 三つの箱から二つの箱を任意に選び,その二つの箱の中の球を交換する.

(1)赤球の球が赤色の箱に入っている確率を求めよ.
(2)箱とその中の球の色が一致している箱の個数の期待値を求めよ.
(3)赤色の球が赤色の箱に入っている事象と,青色の球が青色の箱に入っている事象は,互いに独立かどうか,理由を付けて答えよ.
スポンサーリンク

「三つ」とは・・・

 まだこのタグの説明は執筆されていません。