タグ「一部」の検索結果

1ページ目:全6問中1問~10問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$\mathrm{M}$社はブドウを栽培し,それを原料にしたワインを醸造して世界中に販売している,としよう.一般には,企業の業績には,社内のさまざまな活動だけでなく,社外の要因も大きくかかわっている.しかしながら,ここでは,問題が複雑にならないように,一部の活動に限定して,$\mathrm{M}$社の醸造計画を考えてみよう.

栽培および醸造において,量と質には,醸造量が増えれば増えるほどワインの品質が低下する,という関係があると仮定する.この関係は,
\[ q=a-bx \]
という単純な式で表されるとする.ここで,$x$はワインの醸造量(リットル),$q$はワインの品質の高さを表す$\mathrm{M}$社が独自に定めた指標とし,$a$と$b$は正の実数とする.また,変数$x$のとり得る値の範囲は,$x$と$q$がともに正の値となる範囲とする.
醸造されるワインはすべて同一の品質で,同一の価格で販売されるものとし,その価格を$p$(円/リットル)で表す.市場において,品質の高いワインは希少性が増すため,その価格は非常に高いものになる.この関係は,
\[ p=cq^2 \]
で表されると仮定する.ただし,$c$は正の実数とする.また,醸造されたワインは,上記で定まる価格で,すべて残らずに販売されてしまうものとする.
$\mathrm{M}$社は,以上の諸条件を前提にして,その年の栽培および醸造を行う.すなわち,醸造量を$x$と決め,それに応じて適切な栽培および醸造を行うことにより,品質の指標が$q$となるワインを作り,その全量(すなわち$x$)を品質の指標$q$に応じた価格$p$で販売し,売上高$y=px$(円)を得る.

(1)売上高は,
\[ x=\frac{[$69$]}{[$70$]} \cdot \frac{a}{b} \ \text{(リットル)} \]
のとき,最大値
\[ \frac{[$71$]}{[$72$][$73$]} \cdot \frac{ca \!\!\! \raisebox{3mm}[5mm][1mm]{\mkakko{$74$}}}{b} \ \text{(円)} \]
をとる.
(2)次に,ワインを醸造するに際し,技術上の制約や販売上の都合などの理由で,醸造量の下限が設けられているとしよう.この下限を正の実数$m$(リットル)で表す.$x$の取り得る値の範囲には,$x$が$m$以上という条件が追加されることになる.このときの売上高の最大値を$\overline{y}$で表し,それを与える醸造量を$\overline{x}$で表す.$\overline{x}$は$m$の関数であるので,これを$\overline{x}=f(m)$で表す.関数$f(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
同様に,$\overline{y}$も$m$の関数であるので,これを$\overline{y}=g(m)$で表す.関数$g(m)$の定義域を$\displaystyle 0<m<\frac{a}{b}$として,この関数のグラフを描きなさい.
東京都市大学 私立 東京都市大学 2014年 第2問
次の問に答えよ.

(1)半径$1$の円の一部を半径に沿って切り取って扇形を作り,この扇形の切り口を合わせて円錐を作る.円錐の頂点から底面に下した垂線の長さを$h$とするとき,円錐の容積を最大にする$h$の値を求めよ.
(2)定積分$\displaystyle \int_0^1 \frac{1}{(1+x^2)^\frac{3}{2}} \, dx$の値を求めよ.
(3)定数$a$に対し,$\displaystyle b=-a^2+\frac{1}{2}a+\frac{1}{2}$とおく.自然数$n$に対し
\[ S_n=1+b+b^2+\cdots +b^{n-1} \]
と定める.数列$\{S_n\}$が収束するような$a$の範囲を求め,そのときの極限値$\displaystyle \lim_{n \to \infty} S_n$を$a$の式で表せ.
東北医科薬科大学 私立 東北医科薬科大学 2013年 第2問
$2$直線$x \cos \theta+y \sin \theta=6$,$x \sin \theta-y \cos \theta=8$の交点を$\mathrm{P}(\theta)$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \theta=\frac{\pi}{4}$のとき点$\displaystyle \mathrm{P} \left( \frac{\pi}{4} \right)$を$\mathrm{A}$とおくと$\mathrm{A}$の座標は$([ア] \sqrt{[イ]},\ [ウ] \sqrt{[エ]})$である.
(2)点$\mathrm{P}(\theta)$の座標$(x,\ y)$を$\theta$で表すと$x=[オ] \cos \theta+[カ] \sin \theta$,$y=[キ] \sin \theta-[ク] \cos \theta$である.
(3)$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,点$\mathrm{P}(\theta)$の軌跡は中心$([ケ],\ [コ])$,半径$[サシ]$の円の一部(円弧)を動き,その円弧の長さは$[ス] \pi$である.
(4)点$\displaystyle \mathrm{P} \left( \frac{3\pi}{4} \right)$を$\mathrm{B}$,点$\mathrm{P}(\theta)$を$\mathrm{P}$とおく.このときベクトル$\overrightarrow{\mathrm{PA}}$とベクトル$\overrightarrow{\mathrm{PB}}$の内積は
\[ \overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}=[セソタ]([チ]-\sqrt{[ツ]} \sin \theta) \]
である.また,$\theta$が$\displaystyle \frac{\pi}{4} \leqq \theta \leqq \frac{3\pi}{4}$を動くとき,この内積が最小となる点$\mathrm{P}$の座標は$([テ],\ [ト])$である.
神奈川大学 私立 神奈川大学 2013年 第3問
曲線$C:y=x^3$上の点$\mathrm{P}(t,\ t^3)$における接線を$\ell$とする.$\ell$の$\mathrm{P}$とは異なる$C$との交点を$\mathrm{Q}$とし,$C$と$\ell$とで囲まれた部分を$S$とする.このとき,次の問いに答えよ.ただし,$t>0$とする.

(1)接線$\ell$の方程式と,点$\mathrm{Q}$の座標を求めよ.
(2)原点$\mathrm{O}$と$2$点$\mathrm{P}$,$\mathrm{Q}$の中点を通る直線を$m$とする.$m$の方程式を求めよ.
(3)$(2)$の直線$m$により$S$は$2$つの部分に分けられる.$x$軸で$x>0$の一部を含む部分の面積を$s_1$とし,もう一方の面積を$s_2$とする.このとき$\displaystyle \frac{s_1}{s_2}$を求めよ.
県立広島大学 公立 県立広島大学 2013年 第4問
$a$を正の実数とする.点$\mathrm{A}(0,\ 1)$を定点とし,点$\mathrm{P}(a,\ a^2)$を放物線$C:y=x^2$上の点とする.次の問いに答えよ.

(1)直線$\mathrm{AP}$と放物線$C$の交点で,点$\mathrm{P}$と異なる点$\mathrm{Q}$の座標を$a$を用いて表せ.
(2)点$\mathrm{P}$での放物線$C$の接線$\ell$と$x$軸との交点を$\mathrm{R}$とし,点$\mathrm{Q}$での$C$の接線$m$と$x$軸との交点を$\mathrm{S}$とする.このとき$\mathrm{R}$と$\mathrm{S}$の座標を$a$を用いて表せ.
(3)線分$\mathrm{PR}$,線分$\mathrm{RS}$,線分$\mathrm{SQ}$および放物線$C$の一部である曲線$\mathrm{PQ}$によって囲まれる部分の面積$T(a)$を$a$を用いて表せ.
(4)$T(a)$の最小値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2010年 第5問
関数$y=f(x)$は$0$以上の実数$x$に対して定義され,正の値をとる関数である.図はこの関数のグラフの一部を表している.$0 \leqq t<u$を満たす$2$つの実数$t$と$u$に対して,$x$軸,$2$つの直線$x=t$,$x=u$とこのグラフとで囲まれた領域(網掛け部分)の面積を$S(t,\ u)$と書くことにする.また,面積が$S(t,\ u)$と等しい長方形$\mathrm{ATUB}$を図のようにとり,その高さ$\mathrm{AT}$を$g(t,\ u)$で表すとき,$g(t,\ u)$は$t,\ u$の式として次のようになった.
\[ g(t,\ u)=t^2+tu+u^2+t+u+5 \]
以下の問に答えなさい.

(1)$S(1,\ 3)$を求めなさい.
(2)$S_0(x)=S(0,\ x)$とおく.このとき,$g(t,\ u)$を関数$S_0(x)$を用いて表しなさい.
(3)正の実数$x$に対して,$f(x)$を求めなさい.
(図は省略)
スポンサーリンク

「一部」とは・・・

 まだこのタグの説明は執筆されていません。