タグ「一辺」の検索結果

1ページ目:全102問中1問~10問を表示)
静岡大学 国立 静岡大学 2016年 第1問
一辺の長さが$1$の正方形$\mathrm{ABCD}$が平面上にある.ただし,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$は,この順に反時計回りに並んでいるものとする.このとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}$の値を求めよ.
(2)点$\mathrm{P}$を平面上の点とするとき,$\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PD}}$を証明せよ.
(3)点$\mathrm{P}$が平面上を動くとき,$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PB}} \cdot \overrightarrow{\mathrm{PC}}+\overrightarrow{\mathrm{PC}} \cdot \overrightarrow{\mathrm{PD}}+\overrightarrow{\mathrm{PD}} \cdot \overrightarrow{\mathrm{PA}}$の最小値を求めよ.また,その最小値を与える点$\mathrm{P}$について,$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AD}}$を用いて表せ.
東京工業大学 国立 東京工業大学 2016年 第2問
$\triangle \mathrm{ABC}$を一辺の長さ$6$の正三角形とする.サイコロを$3$回振り,出た目を順に$X,\ Y,\ Z$とする.出た目に応じて,点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ線分$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$上に
\[ \overrightarrow{\mathrm{BP}}=\frac{X}{6} \overrightarrow{\mathrm{BC}},\quad \overrightarrow{\mathrm{CQ}}=\frac{Y}{6} \overrightarrow{\mathrm{CA}},\quad \overrightarrow{\mathrm{AR}}=\frac{Z}{6} \overrightarrow{\mathrm{AB}} \]
をみたすように取る.

(1)$\triangle \mathrm{PQR}$が正三角形になる確率を求めよ.
(2)点$\mathrm{B}$,$\mathrm{P}$,$\mathrm{R}$を互いに線分で結んでできる図形を$T_1$,点$\mathrm{C}$,$\mathrm{Q}$,$\mathrm{P}$を互いに線分で結んでできる図形を$T_2$,点$\mathrm{A}$,$\mathrm{R}$,$\mathrm{Q}$を互いに線分で結んでできる図形を$T_3$とする.$T_1,\ T_2,\ T_3$のうち,ちょうど$2$つが正三角形になる確率を求めよ.
(3)$\triangle \mathrm{PQR}$の面積を$S$とし,$S$のとりうる値の最小値を$m$とする.$m$の値および$S=m$となる確率を求めよ.
香川大学 国立 香川大学 2016年 第2問
\begin{mawarikomi}{50mm}{
(図は省略)
}
図のような,一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.対角線$\mathrm{OF}$上に点$\mathrm{P}$をとり,$\mathrm{OP}=x$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}$を通り対角線$\mathrm{OF}$と直交する平面で,立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を切る.その切り口の多角形の面積$S(x)$を$x$を用いて表せ.
(2)関数$y=S(x)$のグラフをかけ.

(3)定積分$\displaystyle \int_0^{\frac{2 \sqrt{3}}{3}} S(x) \, dx$を求めよ.

\end{mawarikomi}
宮崎大学 国立 宮崎大学 2016年 第2問
一辺の長さ$1$の正五角形$\mathrm{OABCD}$について,$\mathrm{OB}$と$\mathrm{DC}$は平行である.
\[ \overrightarrow{\mathrm{OA}}=\overrightarrow{a},\quad \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\quad \overrightarrow{\mathrm{OC}}=\overrightarrow{x},\quad \overrightarrow{\mathrm{OD}}=\overrightarrow{y},\quad \overrightarrow{\mathrm{DC}}=k \overrightarrow{b} \quad (k \text{は実数}) \]
とするとき,次の各問に答えよ.
(図は省略)

(1)$k$の値を求め,$\overrightarrow{x},\ \overrightarrow{y}$を,$\overrightarrow{a}$と$\overrightarrow{b}$を用いてそれぞれ表せ.
(2)$\overrightarrow{a}$と$\overrightarrow{b}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めよ.
(3)$\overrightarrow{a}$と$\overrightarrow{x}$の内積を求めよ.
静岡大学 国立 静岡大学 2016年 第1問
一辺の長さが$1$の正方形$\mathrm{ABCD}$が平面上にある.ただし,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$は,この順に反時計回りに並んでいるものとする.このとき,次の各問に答えよ.

(1)内積$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AD}}$とベクトルの大きさ$|\overrightarrow{\mathrm{AB|}-\overrightarrow{\mathrm{AC}}-\overrightarrow{\mathrm{AD}}}$の値をそれぞれ求めよ.
(2)点$\mathrm{P}$を平面上の点とするとき,$\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PC}}=\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PD}}$を証明せよ.
(3)点$\mathrm{P}$が平面上を動くとき,$\overrightarrow{\mathrm{PA}} \cdot \overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PB}} \cdot \overrightarrow{\mathrm{PC}}+\overrightarrow{\mathrm{PC}} \cdot \overrightarrow{\mathrm{PD}}+\overrightarrow{\mathrm{PD}} \cdot \overrightarrow{\mathrm{PA}}$の最小値を求めよ.また,その最小値を与える点$\mathrm{P}$について,$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AD}}$を用いて表せ.
大阪大学 国立 大阪大学 2016年 第5問
円上の$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$は反時計回りにこの順に並び,円周を$5$等分している.$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$を頂点とする正五角形を$\mathrm{R}_1$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CD}}=\overrightarrow{c}$とおき,$\overrightarrow{a}$の大きさを$x$とする.

(1)$\overrightarrow{\mathrm{AC}}$の大きさを$y$とするとき,$x^2=y(y-x)$がなりたつことを示せ.
(2)$\overrightarrow{\mathrm{BC}}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(3)$\mathrm{R}_1$の対角線の交点として得られる$\mathrm{R}_1$の内部の$5$つの点を頂点とする正五角形を$\mathrm{R}_2$とする.$\mathrm{R}_2$の一辺の長さを$x$を用いて表せ.
(4)$n=1,\ 2,\ 3,\ \cdots$に対して,$\mathrm{R}_n$の対角線の交点として得られる$\mathrm{R}_n$の内部の$5$つの点を頂点とする正五角形を$\mathrm{R}_{n+1}$とし,$\mathrm{R}_n$の面積を$S_n$とする.
\[ \lim_{n \to \infty} \frac{1}{S_1} \sum_{k=1}^n (-1)^{k+1}S_k \]
を求めよ.
(図は省略)
同志社大学 私立 同志社大学 2016年 第3問
座標空間内の$2$点$\mathrm{A}(0,\ 1,\ 5)$,$\mathrm{B}(5,\ 6,\ 0)$を通る直線を$\ell$とする.点$\mathrm{P}(4,\ 8,\ 13)$および直線$\ell$上の$2$点$\mathrm{Q}$,$\mathrm{R}$を頂点とする$\triangle \mathrm{PQR}$が正三角形であるとする.次の問いに答えよ.

(1)直線$\ell$に,点$\mathrm{P}$から垂線を下ろし,直線$\ell$との交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めよ.
(2)正三角形$\triangle \mathrm{PQR}$の一辺の長さを求めよ.
(3)四面体$\mathrm{PQRS}$が正四面体になるようなすべての点$\mathrm{S}$の座標を求めよ.
立教大学 私立 立教大学 2016年 第2問
図のように辺の長さが$a$と$b$である長方形があり,$ab=1$とする.この長方形の四隅から,一辺の長さが$\displaystyle c \left( 0<c<\frac{1}{2} \right)$の正方形を切り取り,残った部分を組み立ててできる直方体の容器の容積を$V$とする.このとき,次の問いに答えよ.
(図は省略)

(1)$\displaystyle 0<c<\frac{1}{2}$を満たす$c$に対して,$a$と$b$が変化するとき,$a$の値の範囲を$c$を用いて表せ.
(2)容積$V$を$a$と$c$を用いて表せ.
(3)$a$が$(1)$で求めた範囲にあるとき,$V$を最大にする$a$の値と,そのときの$V$の値を$c$を用いて表せ.
(4)$(3)$で求めた$V$の値を$c$の関数として$M(c)$で表す.このとき,$M(c)$を最大にする$c$の値と,そのときの$M(c)$の値を求めよ.
愛知学院大学 私立 愛知学院大学 2016年 第4問
縦$12 \, \mathrm{cm}$,横$18 \, \mathrm{cm}$の長方形の厚紙の四隅から一辺の長さが$a \, \mathrm{cm}$の正方形を切り取り,ふたのない直方体の箱を作ります.この直方体の体積を$V \, \mathrm{cm}^3$としたとき,次の問に答えなさい.

(1)体積$V$を$a$の式で表しなさい.
(2)体積$V$が最大となる$a$を求めなさい.
(3)$V$の最大値を求めなさい.
東京薬科大学 私立 東京薬科大学 2016年 第4問
$2$つの動点$\mathrm{A}$,$\mathrm{B}$は,一辺の長さが$1$の立方体の辺上を,毎秒$1$の速さで,次の規則にしたがって移動する.


\mon[$\lbrack$規則$1 \rbrack$] 最初は同じ頂点にあり,同時に移動を開始する.
\mon[$\lbrack$規則$2 \rbrack$] どの頂点からも,$1$秒で移動可能な$3$つの頂点のいずれかに確率$\displaystyle \frac{1}{3}$で移動する.

自然数$n$について,移動を開始してから$n$秒後における$2$点$\mathrm{A}$,$\mathrm{B}$間の距離が$\sqrt{2}$となる確率を$P_n$とする.以下の問に答えよ.


(1)$\displaystyle P_1=\frac{[ヘ]}{[ホ]},\ P_2=\frac{[マミ]}{[ムメ]}$である.

(2)$P_n$と$P_{n+1}$の関係は
\[ P_{n+1}=\frac{[モ]}{[ヤ]} P_n+\frac{[ユ]}{[ヨ]} \quad (n=1,\ 2,\ \cdots) \]
である.
(3)$\displaystyle P_n=\frac{[ラ]}{[リ]} \left( 1-\frac{[ル]}{{[レ]}^n} \right) (n=1,\ 2,\ \cdots)$である.
スポンサーリンク

「一辺」とは・・・

 まだこのタグの説明は執筆されていません。