タグ「一般」の検索結果

2ページ目:全27問中11問~20問を表示)
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
数列$\{a_n\}$に対してつぎのように定められる数列$\{b_n\}$を$\{a_n\}$の階差数列という.
\[ b_n=a_{n+1}-a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
$\{b_n\}$の階差数列を$\{c_n\}$とし,$\{c_n\}$の階差数列を$\{d_n\}$としよう.いま
\[ a_1=1,\quad b_1=2,\quad c_1=4 \]
であり,$d_n$はすべて$8$に等しいとする.このとき
\[ a_5=[$101$][$102$],\quad a_6=[$103$][$104$][$105$],\quad a_7=[$106$][$107$][$108$] \]
であり,一般に$n=1,\ 2,\ 3,\ \cdots$に対して,
\[ a_n=\frac{1}{3} \left( [$109$][$110$]n^3-[$111$][$112$]n^2+[$113$][$114$]n-[$115$][$116$] \right) \]
である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の座標$1,\ 2,\ 3$で表される位置に置かれた点に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
操作$\mathrm{T}$

\mon[$(\mathrm{a})$] 点が$1$または$2$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で正の方向へ$1$だけ動かす.
\mon[$(\mathrm{b})$] 点が$3$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で負の方向へ$1$だけ動かす.

\end{screen}
以下,$n$を自然数とする.


(1)$1$の位置に置かれている点$\mathrm{A}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{A}$が$1$の位置に置かれている確率を$p_n$,$2$の位置に置かれている確率を$q_n$とすると,$p_n=[あ]$,$q_n=[い]$である.
(2)$2$の位置に置かれている点$\mathrm{B}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{B}$が$2$の位置に置かれている確率を$q_n^\prime$とすると,$q_n^\prime=[う]$である.
(3)$2$点$\mathrm{C}$,$\mathrm{D}$がともに$1$の位置に置かれているとする.はじめに$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うとし,点$\mathrm{C}$が$1$の位置を離れた次の回からは$\mathrm{O}$君が加わって,$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うのと同時に,$\mathrm{K}$君とは独立に,$\mathrm{O}$君が点$\mathrm{D}$に対し操作$\mathrm{T}$を繰り返し行うとする.

$(3-1)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がともに$2$の位置に置かれている確率を$r_n$とすると$r_1=0$,$r_2=[え]$であり,一般に$n \geqq 2$に対して$r_n=[お]$である.
$(3-2)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がどちらも$2$の位置に置かれていない確率を$s_n$とすると$s_1=[か]$である.また一般に$n \geqq 2$に対して$s_n-r_n=[き]$である.
東京理科大学 私立 東京理科大学 2014年 第4問
$r$は$2$以上$9$以下の自然数とする.$n$を$r$以上の自然数として,次の条件を満たす$n$桁の自然数を考える.

(i) 各位の数は$1$から$r$までの数$1,\ 2,\ \cdots,\ r$のどれかである.
(ii) $1,\ 2,\ \cdots,\ r$のどの一つも必ずどこかの位に現れる.

このような自然数全体の集合を考え,この集合の要素の個数を$_r \mathrm{S}_n$とおく.また,この集合のすべての要素の和を$f_r(n)$とおく.

(1)$r=2$とする.

(i) $_2 \mathrm{S}_2=[ア]$,$_2 \mathrm{S}_3=[イ]$である.

一般に,$_2 \mathrm{S}_n={[ウ]}^n-[エ]$である.

(ii) $f_2(2)=[オ][カ]$,$f_2(3)=[キ][ク][ケ]$である.

一般に,$\displaystyle f_2(n)=\frac{[コ]}{[サ]}({[シ][ス]}^n-1) \cdot {_2 \mathrm{S}_n}$が成り立つ.

(2)$r=3$とする.

(i) $_3 \mathrm{S}_n={[セ]}^n-[ソ] \cdot {[ウ]}^n+[タ]$である.

(ii) $f_3(n)=\frac{[チ]}{[ツ]}({[シ][ス]}^n-1) \cdot {}_3 \mathrm{S}_n$が成り立つ.

(3)$r=4$とする.

(i) $_4 \mathrm{S}_n={[テ]}^n-[ト] \cdot {[セ]}^n+[ナ] \cdot {[ウ]}^n-[ニ]$である.

(ii) $f_4(n)=\frac{[ヌ]}{[ネ][ノ]}({[シ][ス]}^n-1) \cdot {}_4 \mathrm{S}_n$が成り立つ.
宮城大学 公立 宮城大学 2014年 第4問
次の問いに答えなさい.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}=7$,$\mathrm{AD}=5$であるとき,辺$\mathrm{CD}$の長さを求めよ.
(2)一般に任意の四角形は必ずしも円に内接しない.では,相異なる$4$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$をこの順に並べた四角形$\mathrm{PQRS}$が円に内接するための「角度に関する必要十分条件」を一つだけ簡潔に記せ.ただし,証明は不要である.
(3)平行四辺形$\mathrm{KLMN}$が円に内接すれば,この平行四辺形は長方形であることを証明せよ.
(図は省略)
名古屋大学 国立 名古屋大学 2013年 第3問
$k,\ m,\ n$は整数とし,$n \geqq 1$とする.$\comb{m}{k}$を二項係数として,$S_k(n),\ T_m(n)$を以下のように定める.
\begin{align}
& S_k(n)=1^k+2^k+3^k+\cdots +n^k,\quad S_k(1)=1 \quad (k \geqq 0) \nonumber \\
& T_m(n)=\comb{m}{1}S_1(n)+\comb{m}{2}S_2(n)+\comb{m}{3}S_3(n)+\cdots +\comb{m}{m-1}S_{m-1}(n) \nonumber \\
& \phantom{T_m(n)}=\sum_{k=1}^{m-1}\comb{m}{k}S_k(n) \quad (m \geqq 2) \nonumber
\end{align}

(1)$T_m(1)$と$T_m(2)$を求めよ.
(2)一般の$n$に対して$T_m(n)$を求めよ.
(3)$p$が7以上の素数のとき,$S_1(p-1),\ S_2(p-1),\ S_3(p-1),\ S_4(p-1)$は$p$の倍数であることを示せ.
大阪大学 国立 大阪大学 2013年 第5問
$n$を3以上の整数とする.$n$個の球$K_1,\ K_2,\ \cdots,\ K_n$と$n$個の空の箱$H_1,\ H_2,\ \cdots,\ H_n$がある.以下のように,$K_1,\ K_2,\ \cdots,\ K_n$の順番に,球を箱に1つずつ入れていく. \\
まず,球$K_1$を箱$H_1,\ H_2,\ \cdots,\ H_n$のどれか1つに無作為に入れる.次に,球$K_2$を,箱$H_2$が空ならば箱$H_2$に入れ,箱$H_2$が空でなければ残りの$n-1$個の空の箱のどれか1つに無作為に入れる. \\
一般に,$i=2,\ 3,\ \cdots,\ n$について,球$K_i$を,箱$H_i$が空ならば箱$H_i$に入れ,箱$H_i$が空でなければ残りの$n-i+1$個の空の箱のどれか1つに無作為に入れる.

(1)$K_n$が入る箱は$H_1$または$H_n$である.これを証明せよ.
(2)$K_{n-1}$が$H_{n-1}$に入る確率を求めよ.
名古屋大学 国立 名古屋大学 2013年 第3問
$k,\ m,\ n$は整数とし,$n \geqq 1$とする.$\comb{m}{k}$を二項係数として,$S_k(n),\ T_m(n)$を以下のように定める.
\begin{align}
& S_k(n)=1^k+2^k+3^k+\cdots +n^k,\quad S_k(1)=1 \quad (k \geqq 0) \nonumber \\
& T_m(n)=\comb{m}{1}S_1(n)+\comb{m}{2}S_2(n)+\comb{m}{3}S_3(n)+\cdots +\comb{m}{m-1}S_{m-1}(n) \nonumber \\
& \phantom{T_m(n)}=\sum_{k=1}^{m-1}\comb{m}{k}S_k(n) \quad (m \geqq 2) \nonumber
\end{align}

(1)$T_m(1)$と$T_m(2)$を求めよ.
(2)一般の$n$に対して$T_m(n)$を求めよ.
(3)$p$が3以上の素数のとき,$S_k(p-1) \ (k=1,\ 2,\ 3,\ \cdots,\ p-2)$は$p$の倍数であることを示せ.
島根大学 国立 島根大学 2013年 第2問
円周上に異なる$n$個の点があり,どの$2$点も線分で結ばれている.ここで$n$は$4$以上の自然数とする.同様の確からしさで異なる$2$本の線分を$1$組選ぶとき,その$2$本が円の内部で交わっている確率を考える.たとえば,$n=4$のときは,線分が$6$本,異なる$2$本の線分の組が$15$組,そのうち円の内部で交わるものは$1$組で,円の内部で交わっている確率は$\displaystyle \frac{1}{15}$となる.このとき,次の問いに答えよ.

(1)$n=5$のとき,線分の数,異なる$2$本の線分の組の数,そのうち円の内部で交わっている組の数をそれぞれ求めよ.また,異なる$2$本の線分を$1$組選ぶとき,その$2$本が円の内部で交わっている確率を求めよ.
(2)一般に,異なる$2$本の線分を$1$組選ぶとき,その$2$本が円の内部で交わっている確率を$n$を用いて表せ.
島根大学 国立 島根大学 2013年 第3問
円周上に異なる$n$個の点があり,どの$2$点も線分で結ばれている.ここで$n$は$4$以上の自然数とする.同様の確からしさで異なる$2$本の線分を$1$組選ぶとき,その$2$本が円の内部で交わっている確率を考える.たとえば,$n=4$のときは,線分が$6$本,異なる$2$本の線分の組が$15$組,そのうち円の内部で交わるものは$1$組で,円の内部で交わっている確率は$\displaystyle \frac{1}{15}$となる.このとき,次の問いに答えよ.

(1)$n=5$のとき,線分の数,異なる$2$本の線分の組の数,そのうち円の内部で交わっている組の数をそれぞれ求めよ.また,異なる$2$本の線分を$1$組選ぶとき,その$2$本が円の内部で交わっている確率を求めよ.
(2)一般に,異なる$2$本の線分を$1$組選ぶとき,その$2$本が円の内部で交わっている確率を$n$を用いて表せ.
宮城大学 公立 宮城大学 2013年 第2問
次の空欄$[タ]$から$[ト]$にあてはまる数や式を書きなさい.

次のような整数の数列$\{a_n\}$がある.
$1,\ 1,\ 2,\ 1,\ 1,\ 2,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ 4,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ 4,\ 5,\ 4,\ 3,\ 2,\ 1,\ \cdots,\ 1,\ 2,\ 3,\ \cdots,\ n-2,\ n-1,\ n,\ n-1,\ \cdots,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ \cdots$
ここで,$a_1=1$だけからなる群を第$1$群,$a_2=1,\ a_3=2,\ a_4=1$からなる群を第$2$群と呼ぶことにする.一般に,$1,\ 2,\ 3,\ 4,\ \cdots,\ k-1,\ k,\ k-1,\ \cdots,\ 3,\ 2,\ 1$からなる群を第$k$群と呼ぶことにする.
このとき,以下の問いに答えなさい.
(1)第$n$群の項数を$n$を用いて表せば$[タ]$個となる.
(2)第$n$群に属する項すべての整数の和を$n$を用いて表せば$[チ]$となる.
(3)整数$7$が,数列$\{a_n\}$の初項から「第$n$群に含まれる最後の項」までの間に現れる回数を$n$を用いて表せば$[ツ]$回となる.ただし,$n$は$7$以上の自然数とする.
(4)数列$\{a_n\}$の第$364$項は第$[テ]$群に属し,その第$[テ]$群の先頭から$[ト]$番目の項である.
スポンサーリンク

「一般」とは・・・

 まだこのタグの説明は執筆されていません。