タグ「一致」の検索結果

13ページ目:全135問中121問~130問を表示)
関西学院大学 私立 関西学院大学 2011年 第2問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$k$は実数とする.$xy$平面において直線
\[ y=-x+1 \cdots\cdots① \]
が放物線
\[ y=-x^2+k \cdots\cdots② \]
に接するとする.このとき$k$の値は$[ ]$である.また,放物線$②$と直線$①$が共有点をもたないような$k$の値の範囲は$[$*$]$である.放物線$②$上の点$\mathrm{P}(a,\ -a^2+k)$から直線$①$までの距離$d$は$d=[ ]$で表される.$k$が$[$*$]$の範囲にあるとき,放物線$②$上の点$\mathrm{P}(a,\ -a^2+k)$から直線$①$までの距離$d$が最小になるのは$a=[ ]$のときで,そのときの距離$d$の値は$[ ]$である.
(2)数列$\{a_n\}$において初項$a_1$から第$n$項$a_n$までの和を$S_n$とする.このとき
\[ S_n=2a_n+5n-12 \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立っているとする.数列の初項$a_1$は$S_1$と一致することを使うと,$a_1$の値は$[ ]$であることがわかる.第$n$項$a_n$を$a_{n-1}$で表すと$a_n=[ ] (n=2,\ 3,\ 4,\ \cdots)$となるので,$a_n,\ S_n$をそれぞれ$n$の式で表すと$a_n=[ ]$,$S_n=[ ]$となる.
関西学院大学 私立 関西学院大学 2011年 第3問
$xy$平面において,$2$つの放物線$y=x^2$と$y=2x^2-3x+2$の$2$つの共有点のうち$x$座標が小さい方を$\mathrm{A}$,大きい方を$\mathrm{B}$とする.次の問いに答えよ.

(1)点$\mathrm{A}$,点$\mathrm{B}$の座標を求めよ.
(2)$2$つの放物線と直線$x=\sqrt{3}$で囲まれ,$x \leqq \sqrt{3}$の範囲にある部分の面積を求めよ.
(3)放物線$y=x^2$上の点$(p,\ p^2)$における放物線$y=x^2$の接線の方程式と,放物線$y=2x^2-3x+2$上の点$(q,\ 2q^2-3q+2)$における放物線$y=2x^2-3x+2$の接線の方程式を求めよ.
(4)$(3)$において,$2$つの接線が一致し,$p$が点$\mathrm{A}$の$x$座標より小さいとする.$p$の値を求めよ.
岡山県立大学 公立 岡山県立大学 2011年 第3問
$a$を実数とする.曲線$\displaystyle y=\frac{1}{4}(x-a)^2$と曲線$y=e^x$の共有点$\mathrm{P}(s,\ t)$において$2$曲線の接線が一致するとき,以下の問いに答えよ.

(1)$a$の値を求めよ.また,そのときの点$\mathrm{P}$における接線の方程式を求めよ.
(2)$x \geqq a$のとき$\displaystyle \frac{(x-a)^2}{e^x}$の最大値を求めよ.
信州大学 国立 信州大学 2010年 第3問
関数$y = 2 \sin 3x+ \cos 2x-2 \sin x+a$の最小値の絶対値が,最大値と一致するように,定数$a$の値を定めよ.
名古屋大学 国立 名古屋大学 2010年 第1問
$xy$平面上の長方形ABCDが次の条件(a),(b),(c)を満たしているとする.

\mon[(a)] 対角線ACとBDの交点は原点Oに一致する.
\mon[(b)] 直線ABの傾きは2である.
\mon[(c)] Aの$y$座標は,B,C,Dの$y$座標より大きい.

このとき,$a>0,\ b>0$として,辺ABの長さを$2\sqrt{5}a$,BCの長さを$2\sqrt{5}b$とおく.

(1)A,B,C,Dの座標を$a,\ b$で表せ.
(2)長方形ABCDが領域$x^2+(y-5)^2 \leqq 100$に含まれるための$a,\ b$に対する条件を求め,$ab$平面上に図示せよ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
東北大学 国立 東北大学 2010年 第4問
四面体ABCDにおいて,辺AB の中点をM,辺CDの中点をNとする.以下の問いに答えよ.

(1)等式
\[ \overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}} = \overrightarrow{\mathrm{PC}}+ \overrightarrow{\mathrm{PD}} \]
を満たす点Pは存在するか.証明をつけて答えよ.
(2)点Qが等式
\[ |\overrightarrow{\mathrm{QA}}+\overrightarrow{\mathrm{QB}}| = |\overrightarrow{\mathrm{QC}}+\overrightarrow{\mathrm{QD}}| \]
を満たしながら動くとき,点Qが描く図形を求めよ.
(3)点Rが等式
\[ |\overrightarrow{\mathrm{RA}}|^2 + |\overrightarrow{\mathrm{RB}}|^2 = |\overrightarrow{\mathrm{RC}}|^2 + |\overrightarrow{\mathrm{RD}}|^2 \]
を満たしながら動くとき,内積$\overrightarrow{\mathrm{MN}} \cdot \overrightarrow{\mathrm{MR}}$はRのとり方によらず一定であることを示せ.
(4)(2)の点Qが描く図形と(3)の点Rが描く図形が一致するための必要十分条件は$|\overrightarrow{\mathrm{AB}}|=|\overrightarrow{\mathrm{CD}}|$であることを示せ.
佐賀大学 国立 佐賀大学 2010年 第4問
$e$は自然対数の底,$a,\ b,\ c$は実数である.放物線$y=ax^2+b$を$C_1$とし,曲線$y=c \log x$を$C_2$とする.$C_1$と$C_2$が点P$(e,\ e)$で接しているとき,次の問いに答えよ.ここで,2つの曲線が点Pで接しているとは,ともに点Pを通り,かつ,その点における接線が一致していることである.

(1)$a,\ b,\ c$の値を求めよ.
(2)$C_1,\ C_2$および$x$軸,$y$軸とで囲まれた図形の面積を求めよ.
旭川医科大学 国立 旭川医科大学 2010年 第2問
$\alpha>1$とする.$\displaystyle 0<t<\frac{\pi}{\alpha-1}$となる$t$に対して,$xy$平面上の点P$(\cos t,\ \sin t)$と点Q$(\cos \alpha t,\ \sin \alpha t)$を通る直線を$\ell_t$とする.次の問いに答えよ.

(1)直線$\ell_t$の方程式を
\[ f(t)x+g(t)y=h(t) \]
とする.$h(t)=-\sin (\alpha-1)t$のとき,$f(t),\ g(t)$を求めよ.
(2)行列$\left( \begin{array}{cc}
f(t) & g(t) \\
f^\prime(t) & g^\prime(t)
\end{array} \right)$は逆行列をもつことを示せ.
(3)$x(t),\ y(t)$を
\[ \left( \begin{array}{cc}
f(t) & g(t) \\
f^\prime(t) & g^\prime(t)
\end{array} \right) \left( \begin{array}{c}
x(t) \\
y(t)
\end{array} \right)=\left( \begin{array}{c}
h(t) \\
h^\prime(t)
\end{array} \right) \]
を満たすものとし,点R$(x(t),\ y(t))$が描く曲線を$C$とする.このとき,点Rは直線$\ell_t$上にあり,曲線$C$の点Rにおける接線は$\ell_t$と一致することを示せ.
愛知教育大学 国立 愛知教育大学 2010年 第6問
次の問いに答えよ.

(1)曲線$y=\log x$上の点$\mathrm{A}(1,\ 0)$における接線$\ell_1$の方程式を求めよ.
(2)曲線$y=\log x$上の点$\mathrm{B}(2,\ \log 2)$における接線$\ell_2$の方程式を求めよ.
(3)$f(x)=ax^3+bx^2+cx+d$とおく.曲線$y=f(x)$は2点$\mathrm{A},\ \mathrm{B}$を通り,さらにこの2点での接線がそれぞれ$\ell_1,\ \ell_2$と一致する.このときの$a,\ b,\ c,\ d$の値を求めよ.
(4)(3)で求めた$f(x)$に対して$g(x)=f(x)-\log x$とおく.関数$y=g(x) \ (1 \leqq x \leqq 2)$の最大値を与える$x$の値を求めよ.ただし$0.69<\log 2<0.70$であることを用いてよい.
スポンサーリンク

「一致」とは・・・

 まだこのタグの説明は執筆されていません。