タグ「一致」の検索結果

11ページ目:全135問中101問~110問を表示)
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100$($x \geqq 0$かつ$y \geqq 0$)を$C$とする.点$\mathrm{P},\ \mathrm{Q}$は$C$上にあり,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.ただし,点$\mathrm{P}$と点$\mathrm{Q}$が一致するときは,点$\mathrm{R}$は点$\mathrm{P}$に等しいものとする.

(1)点$\mathrm{P}$の座標が$(6,\ 8)$であり,点$\mathrm{Q}$が$C$上を動くとき,点$\mathrm{R}$の軌跡は,
\[ (x-[キ])^2+(y-[ク])^2=[ケ],\ [コ] \leqq x \leqq [サ],\ [シ] \leqq y \leqq [ス] \]
である.
(2)点$\mathrm{P}$,$\mathrm{Q}$が$C$上を自由に動くとき,点$\mathrm{R}$の動く範囲の面積は,
\[ \frac{[セ]}{[ソ]}\pi + [タ] \]
である.ただし,$[ソ]$はできるだけ小さな自然数で答えること.
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100\ (x \geqq 0 \text{かつ} y \geqq 0)$を$C$とする.点P,Qは$C$上にあり,線分PQの中点をRとする.ただし,点Pと点Qが一致するときは,点Rは点Pに等しいものとする.

(1)点Pの座標が$(6,\ 8)$であり,点Qが$C$上を動くとき,点Rの軌跡は,
\[ \left( x-[キ]\right)^2 + \left(y-[ク]\right)^2 = [ケ],\]
\[ [コ] \leqq x \leqq [サ], \ [シ] \leqq y \leqq [ス] \]
である.
(2)点P,Qが$C$上を自由に動くとき,点Rの動く範囲の面積は,
\[ \frac{[セ]}{[ソ]} \pi + [タ] \]
である.ただし,[ソ]はできるだけ小さな自然数で答えること.
自治医科大学 私立 自治医科大学 2012年 第24問
$2$つの曲線$C_1:f(x)=x^3+3x^2$,$C_2:g(x)=x^3+3x^2+c$($c>0$,$c$は実数定数)について考える.点$\mathrm{P}(p,\ f(p))$における$C_1$の接線と点$\mathrm{Q}(q,\ g(q))$における$C_2$の接線が一致するとき($p \neq q$),$c=-A(p+1)^3$と表記される.$A$の値を求めよ.
関西大学 私立 関西大学 2012年 第3問
$A=\left( \begin{array}{cc}
a & -b \\
b & a
\end{array} \right) (b \neq 0)$が表す$1$次変換を$f$とする.点$\mathrm{P}(c,\ 0) (c>0)$を考える.次の問いに答えよ.

(1)次の$[$①$]$から$[$④$]$を数値でうめよ.
点$\mathrm{Q}(3,\ 4)$を,点$\mathrm{R}(1,\ 2)$を中心として反時計まわりに$\displaystyle \frac{\pi}{3}$だけ回転した点の座標は
\[ \left( \begin{array}{rr}
\displaystyle \cos \frac{\pi}{3} & \displaystyle -\sin \frac{\pi}{3} \\ \\
\displaystyle \sin \frac{\pi}{3} & \displaystyle \cos \frac{\pi}{3}
\end{array} \right) \left( \begin{array}{c}
3-[$①$] \\ \\
4-[$②$]
\end{array} \right)+\left( \begin{array}{c}
[$①$] \\ \\
[$②$]
\end{array} \right) \]
を計算することにより,$([$③$],\ [$④$])$である.

(2)$B=\left( \begin{array}{rr}
\displaystyle \cos \frac{\pi}{3} & \displaystyle -\sin \frac{\pi}{3} \\
\displaystyle \sin \frac{\pi}{3} & \displaystyle \cos \frac{\pi}{3}
\end{array} \right)$,$V=\left( \begin{array}{c}
c \\
0
\end{array} \right)-A \left( \begin{array}{c}
c \\
0
\end{array} \right)$,$O=\left( \begin{array}{c}
0 \\
0
\end{array} \right)$とおく.

点$\mathrm{P}$を,点$f(\mathrm{P})$を中心として反時計まわりに$\displaystyle \frac{\pi}{3}$だけ回転した点が$(f \circ f)(\mathrm{P})$と一致するという条件を$A,\ B,\ V,\ O$を用いて表すと,$([$⑤$])V=O$と表すことができる.$A$と$B$を用いて$[$⑤$]$をうめよ.
(3)$3$点$\mathrm{P}$,$f(\mathrm{P})$,$(f \circ f)(\mathrm{P})$が正三角形の$3$つの頂点をなすとき,$a,\ b$の値を求めよ.
(4)$(3)$の正三角形の$1$辺の長さが$1$になるとき,$c$の値を求めよ.
昭和薬科大学 私立 昭和薬科大学 2012年 第1問
次の問いに答えよ.

(1)$\log_{10}3=a$,$\log_{10}5=b$のとき,$\log_{\frac{3}{2}}48$を$a,\ b$で表すと$\displaystyle \frac{a-[ ]b+[ ]}{a+[ ]b-[ ]}$である.
(2)関数$\displaystyle y=12 \sin \theta+5 \cos \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$について,$y$の取り得る値の範囲は$[ ] \leqq y \leqq [ ]$である.
(3)ある$2$次関数のグラフを$x$軸方向に$4$,$y$軸方向に$-6$平行移動すると,$y=-x^2+6x+6$と一致する.もとの$2$次関数は$y=-x^2-[ ]x+[ ]$である.
(4)赤玉が$5$個,青玉が$4$個入っている袋から$3$個を取り出すとき,少なくとも$1$個が青玉である確率は$\displaystyle \frac{[ ]}{[ ]}$である.
(5)$\triangle \mathrm{ABC}$において,それぞれの辺の長さを$a=3$,$b=\sqrt{7}$,$c=2$とするとき,$\mathrm{A}$から辺$\mathrm{BC}$に下ろした垂線$\mathrm{AH}$の長さは$\sqrt{[ ]}$である.
(6)$3$点$\mathrm{A}(2,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$が定める平面に原点$\mathrm{O}$から垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$で表すと
\[ \overrightarrow{\mathrm{OH}}=\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OA}}+\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OB}}+\frac{[ ]}{[ ]} \overrightarrow{\mathrm{OC}} \]
である.
産業医科大学 私立 産業医科大学 2012年 第2問
座標平面上の原点を$\mathrm{O}$とする.中心が$\mathrm{O}$,半径が$1$の円を$C$とする.円$C$の外部の点を$\mathrm{P}(x_0,\ y_0)$とする.点$\mathrm{P}$を通り円$C$に接する$2$直線を$\ell_1$,$\ell_2$とする.このとき,次の問いに答えなさい.

(1)直線$\ell_1$,$\ell_2$と円$C$の$2$つの接点を結ぶ線分の中点の座標を,点$\mathrm{P}$の座標$x_0$と$y_0$で表しなさい.
(2)直線$\ell_1$,$\ell_2$は$y$軸に平行でないとする.直線$\ell_1$,$\ell_2$と$y$軸の交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とし,線分$\mathrm{QR}$の中点を$\mathrm{M}$とする.ただし,点$\mathrm{Q}$と$\mathrm{R}$が一致するときは,点$\mathrm{M}$は点$\mathrm{Q}$,$\mathrm{R}$と一致する点とする.このとき,点$\mathrm{M}$の$y$座標が$2$となる点$\mathrm{P}$の描く曲線と直線$\displaystyle y=\frac{1}{\sqrt{3}}x+1$で囲まれる図形の面積を求めなさい.
秋田大学 国立 秋田大学 2011年 第3問
点$\mathrm{O}$を中心とし,半径が$r$である円に内接する$\triangle \mathrm{ABC}$について,$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$をそれぞれ$2:1$に内分する点を$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a},\ \overrightarrow{\mathrm{OB}}=\overrightarrow{b},\ \overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$r$と内積$\overrightarrow{a}\cdot \overrightarrow{b}$を用いて$|\overrightarrow{\mathrm{OA^\prime}}|^2$を表せ.
(2)$3$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$,$\mathrm{C}^\prime$を通る円の中心が点$\mathrm{O}$と一致するとき,$\triangle \mathrm{ABC}$が正三角形であることを示せ.
広島大学 国立 広島大学 2011年 第1問
実数 $a,\ b$に対して,$2$次正方行列$A$と列ベクトル$B$を
\[ A=\left( \begin{array}{cc}
a & 2-a \\
1+a & 2
\end{array} \right),\quad B=\left( \begin{array}{c}
2b \\
b
\end{array} \right) \]
と定め,$E =\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.等式
\[ \left( \begin{array}{c}
x^\prime \\
y^\prime
\end{array} \right)=A \left( \begin{array}{c}
x \\
y
\end{array} \right)+B \]
により,座標平面上の点P$(x,\ y)$に対し点P$^\prime (x^\prime,\ y^\prime)$が定まるものとする.次の問いに答えよ.

(1)$a = b = -1$のとき,点P$^\prime (3,\ 2)$となる点P$(x,\ y)$を求めよ.
(2)$A^2 = kE \ (k \text{は実数})$を満たすとき,$a,\ k$の値を求めよ.
(3)どんな点Pに対しても点P$^\prime$が原点Oに一致しないための$a,\ b$の条件を求めよ.
広島大学 国立 広島大学 2011年 第5問
$\triangle$ABCの頂点は反時計回りにA,B,Cの順に並んでいるとする.点Aを出発した石が,次の規則で動くとする.\\
\quad コインを投げて表が出たとき反時計回りに隣の頂点に移り,裏が出たときは動かない.コインを投げて表と裏の出る確率はそれぞれ$\displaystyle \frac{1}{2}$とする. \\
コインを$n$回投げたとき,石が点A,B,Cにある確率をそれぞれ$a_n,\ b_n,\ c_n$とする.次の問いに答えよ.

(1)$a_1,\ b_1,\ c_1$の値を求めよ.
(2)$a_{n+1},\ b_{n+1},\ c_{n+1}$を$a_n,\ b_n,\ c_n$で表せ.また,$a_2,\ b_2,\ c_2$および$a_3,\ b_3,\ c_3$の値を求めよ.
(3)$a_n,\ b_n,\ c_n$のうち2つの値が一致することを証明せよ.
(4)(3)において一致する値を$p_n$とする.$p_n$を$n$で表せ.
三重大学 国立 三重大学 2011年 第2問
座標平面において直線$\ell:y=ax+b$と直線$m:y=2x$を考える.

(1)2点$(0,\ 0)$,$(2,\ 0)$から直線$\ell$までの距離が一致するための$a,\ b$についての必要十分条件を求めよ.
(2)(1)の条件のもとで2直線$\ell,\ m$のなす角が$\displaystyle \frac{\pi}{4}$であるとき$a,\ b$の値を求めよ.ただし2直線のなす角$\theta$は常に$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$の範囲で考えるものとする.
スポンサーリンク

「一致」とは・・・

 まだこのタグの説明は執筆されていません。