タグ「一直線」の検索結果

4ページ目:全51問中31問~40問を表示)
上智大学 私立 上智大学 2014年 第1問
次の$[あ]$~$[お]$に当てはまるものを,下の選択肢から選べ.

(1)$\displaystyle x=-\frac{2}{3}$は$3x^2-13x-10=0$であるための$[あ]$
(2)$n$を自然数とする.$n^2$が$5$の倍数であることは,$n$が$5$の倍数であるための$[い]$
(3)$a,\ b$を自然数とする.$(a+b)^2$が奇数であることは,$ab$が偶数であるための$[う]$
(4)平面上の異なる$2$つの円$C$,$C^\prime$の半径をそれぞれ$r$,$r^\prime$とし,中心間の距離を$d$とする.ただし,$r<r^\prime$とする.このとき,$C$と$C^\prime$が共有点をもたないことは,$d>r+r^\prime$であるための$[え]$
(5)$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CA}=7$の$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$の延長上に$\mathrm{CD}=4$となる点$\mathrm{D}$をとり,辺$\mathrm{AC}$上に$\mathrm{AE}=3$となる点$\mathrm{E}$をとる.このとき,辺$\mathrm{AB}$上の点$\mathrm{F}$に対して,$\mathrm{AF}=3$であることは,$3$点$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$が一直線上にあるための$[お]$
選択肢:

\mon[$①$] 必要条件であるが十分条件ではない.
\mon[$②$] 十分条件であるが必要条件ではない.
\mon[$③$] 必要十分条件である.
\mon[$④$] 必要条件でも十分条件でもない.
立教大学 私立 立教大学 2014年 第2問
平面上に三角形$\mathrm{OAB}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.このとき,次の問に答えよ.

(1)線分$\mathrm{AB}$の中点を$\mathrm{C}$とする.$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)線分$\mathrm{OA}$を$s:(1-s)$,線分$\mathrm{OB}$を$t:(1-t)$に内分した点をそれぞれ$\mathrm{D}$,$\mathrm{E}$とする.$\overrightarrow{\mathrm{DB}}$,$\overrightarrow{\mathrm{EA}}$を$s,\ t,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.ただし,$0<s<1$,$0<t<1$とする.
(3)線分$\mathrm{DB}$と線分$\mathrm{EA}$の交点を$\mathrm{F}$とする.$\displaystyle s=\frac{1}{3},\ t=\frac{2}{3}$のとき,$\overrightarrow{\mathrm{OF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(4)$(3)$で用いた$s,\ t$の値に対し,線分$\mathrm{OF}$の中点を$\mathrm{H}$,線分$\mathrm{DE}$を$k:(1-k)$に内分した点を$\mathrm{G}$とするとき,$\mathrm{H}$,$\mathrm{G}$,$\mathrm{C}$が一直線上にあるときの$k$の値を求めよ.
岩手大学 国立 岩手大学 2013年 第4問
平面上の一直線上にない$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を考える.線分$\mathrm{PQ}$の中点を$\mathrm{A}$とし,$\mathrm{O}$を端点とし$\mathrm{A}$の方向に伸びた半直線$\mathrm{OA}$上の点を$\mathrm{B}$とする.点$\mathrm{B}$が$|\overrightarrow{\mathrm{OA}}| |\overrightarrow{\mathrm{OB}}|=1$を満たすとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OB}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{OQ}}|=1$のとき,$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{\mathrm{OP}}$の内積を求めよ.
岩手大学 国立 岩手大学 2013年 第4問
平面上の一直線上にない$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$を考える.線分$\mathrm{PQ}$の中点を$\mathrm{A}$とし,$\mathrm{O}$を端点とし$\mathrm{A}$の方向に伸びた半直線$\mathrm{OA}$上の点を$\mathrm{B}$とする.点$\mathrm{B}$が$|\overrightarrow{\mathrm{OA}}| |\overrightarrow{\mathrm{OB}}|=1$を満たすとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OA}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(2)ベクトル$\overrightarrow{\mathrm{OB}}$を$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{OQ}}$を用いて表せ.
(3)$|\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{OQ}}|=1$のとき,$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{\mathrm{OP}}$の内積を求めよ.
日本女子大学 私立 日本女子大学 2013年 第3問
平面上で点$\mathrm{P}$から直線$\ell$に引いた垂線と$\ell$との交点を,点$\mathrm{P}$から直線$\ell$に下ろした垂線の足という.

(1)点$\mathrm{P}(p,\ q)$から直線$ax+by+c=0$に下ろした垂線の足の座標を求めよ.
(2)$3$点$\mathrm{A}(5,\ 0)$,$\mathrm{B}(4,\ 3)$,$\mathrm{C}(3,\ 4)$を考える.$2$点$\mathrm{A}$,$\mathrm{B}$を通る直線を$\ell_1$,$2$点$\mathrm{B}$,$\mathrm{C}$を通る直線を$\ell_2$,$2$点$\mathrm{A}$,$\mathrm{C}$を通る直線を$\ell_3$とする.点$\mathrm{P}(p,\ q)$から$\ell_1$,$\ell_2$,$\ell_3$へ下ろした垂線の足をそれぞれ$\mathrm{H}_1$,$\mathrm{H}_2$,$\mathrm{H}_3$とする.$3$点$\mathrm{H}_1$,$\mathrm{H}_2$,$\mathrm{H}_3$が一直線上にあるような点$\mathrm{P}(p,\ q)$の軌跡を求めよ.
立教大学 私立 立教大学 2013年 第2問
図のように,座標平面上に,$x$座標が$0,\ 1,\ 2$,$y$座標が$0,\ 1,\ 2$である$9$個の点がある.これらの$9$点から$1$点を選ぶ試行を$3$回くり返すことで$3$点を選ぶ.ただし,どの点を選ぶ確率も等しいとする.このとき,次の問に答えよ.

(1)$3$点とも原点$\mathrm{O}$になる確率を求めよ.
(2)$3$点が同一の点になる確率を求めよ.
(3)$3$点のうち$2$点だけが同一の点になる確率を求めよ.
(4)$3$点とも異なる点であり,かつ一直線上に並ぶ確率を求めよ.
(5)$3$点を頂点とする三角形ができる確率を求めよ.
(図は省略)
北海道大学 国立 北海道大学 2012年 第1問
$m>0$,$n>0$,$0<x<1$とする.$\triangle \mathrm{OAB}$の辺$\mathrm{OA}$を$m:n$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$n:m$に内分する点を$\mathrm{Q}$とする.また,線分$\mathrm{AQ}$を$1:x$に外分する点を$\mathrm{S}$,線分$\mathrm{BP}$を$1:x$に外分する点を$\mathrm{T}$とする.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{\mathrm{OS}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$m,\ n,\ x$で表せ.
(2)$3$点$\mathrm{O}$,$\mathrm{S}$,$\mathrm{T}$が一直線上にあるとき,$x$を$m,\ n$で表せ.
宮城教育大学 国立 宮城教育大学 2012年 第2問
三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$それぞれの中点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$p$を$0<p<1$を満たす数として,線分$\mathrm{EF}$,$\mathrm{FD}$,$\mathrm{DE}$をそれぞれ$p:1-p$に内分する点を$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$とする.$\overrightarrow{\mathrm{AF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AE}}=\overrightarrow{b}$として,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AG}}$,$\overrightarrow{\mathrm{AH}}$をそれぞれ$\overrightarrow{a}$,$\overrightarrow{b}$,$p$を用いて表せ.
(2)$3$点$\mathrm{A}$,$\mathrm{G}$,$\mathrm{H}$が一直線上にあるときの$p$の値を求めよ.
(3)$p$が(2)で求めた値であるとし,$|\overrightarrow{\mathrm{AB}}|=4$,$|\overrightarrow{\mathrm{AC}}|=2$,$\angle \mathrm{BAC}=60^\circ$であるとき,$|\overrightarrow{\mathrm{GH}}|^2$を求めよ.
福井大学 国立 福井大学 2011年 第2問
Oを原点とする座標平面上に2点A$(4,\ 2)$,B$(5,\ 0)$がある.AをP$_0$とし,P$_0$から直線OBに下ろした垂線と直線OBとの交点をP$_1$,P$_1$から直線OAに下ろした垂線と直線OAとの交点をP$_2$とする.同様にして,自然数$n$に対して,P$_{2n}$から直線OBに下ろした垂線と直線OBとの交点をP$_{2n+1}$,P$_{2n+1}$から直線OAに下ろした垂線と直線OAとの交点をP$_{2n+2}$とする.さらに,自然数$n$に対して,線分P$_{n-1}$P$_n$の長さを$l_n$とするとき,以下の問いに答えよ.

(1)$l_n$を$n$の式で表せ.
(2)$l_1+l_2+\cdots +l_n> \text{OA}+\text{OB}$となる最小の$n$の値を求めよ.ただし,$\log_{10}2=0.3010$とする.
(3)線分P$_{2n-1}$P$_{2n}$の中点をM$_n$とするとき,点M$_1$,M$_2$,M$_3$,$\cdots$,M$_n$,$\cdots$は一直線上にあることを示し,その直線の方程式を求めよ.
宮崎大学 国立 宮崎大学 2011年 第4問
各辺の長さが1の正三角形OABがある.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}},\ \overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおき,線分ABを$1:2$に内分する点をCとする.さらに,2点P,Qは,正の実数$k,\ l$について,$\overrightarrow{\mathrm{OP}}=k \overrightarrow{\mathrm{OB}},\ \overrightarrow{\mathrm{OQ}}=l \overrightarrow{\mathrm{OC}}$を満たすものとする.このとき,次の各問に答えよ.

(1)3点A,P,Qが一直線上にあるとき,$k$と$l$の関係式を求めよ.
(2)3点A,P,Qが一直線上にないものとし,$\triangle$APQの重心が$\angle$AOBの二等分線上にあるとする.このとき,$k$と$l$の関係式を求めよ.
(3)(2)のもとで,$\text{AP}=\text{AQ}$となるとき,$k$の値を求めよ.
スポンサーリンク

「一直線」とは・・・

 まだこのタグの説明は執筆されていません。