タグ「一番」の検索結果

1ページ目:全12問中1問~10問を表示)
鳴門教育大学 国立 鳴門教育大学 2016年 第5問
$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人がサイコロを振って一番大きな目が出た人を勝者とします.ただし,一番大きな目が出た人が$2$人以上いる場合は,その人たち全員を勝者とします.$1$回目で勝者が一人に決まらなかった場合には,勝者の間で再びサイコロを振って,同様の方法で勝者を決めるものとします.このとき次の問いに答えなさい.

(1)$1$回目で勝者が$1$人に決まる確率を求めなさい.
(2)$1$回目で勝者が$2$人だけ残る確率を求めなさい.
(3)$2$回目で勝者が$1$人に決まる確率を求めなさい.
工学院大学 私立 工学院大学 2016年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$z=\sqrt{-2} \times \sqrt{-3}$,$\displaystyle w=\frac{\sqrt{6}}{\sqrt{-2}}$のとき,$z+w$の実部は$[ア]$で虚部は$[イ]$である.
(2)関数$f(x)=\cos 2x+\sin x+a$の最大値が$2$のとき,定数$a$の値は$[ウ]$で,$f(x)$の最小値は$[エ]$である.
(3)$4$つの数$\displaystyle \frac{3}{2},\ \log_2 3,\ \log_4 6,\ \log_4 7$のうち,一番小さい数は$[オ]$で,一番大きい数は$[カ]$である.
(4)関数$f(x)=x^3-(a+1)x^2-15x$が$x=a$で極小値をとるとき,定数$a$の値は$[キ]$で,$f(x)$の極大値は$[ク]$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第4問
$5$個の連続な自然数の和が$1000$であるとき,この連続な自然数の一番小さい数は$[シ][ス][セ]$である.
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
宮崎大学 国立 宮崎大学 2014年 第5問
白球$6$個と黒球$4$個がある.はじめに,白球$6$個を横$1$列に並べる.次に,

$1$から$6$の目がそれぞれ$\displaystyle \frac{1}{6}$の確率で出るサイコロを$1$つ投げて,出た目の数が$a$であれば,並んでいる球の左から$a$番目の球の左に黒球を$1$個入れる

という操作を$4$回繰り返す.例えば,

$1$回目に$1$の目,$2$回目に$5$の目,$3$回目に$5$の目,$4$回目に$2$の目

が出た場合の球の並びの変化は下の図のようになる.
(図は省略)
最終的な$10$個の球の並びにおいて,一番左にある白球よりも左にある黒球の個数を$k$とするとき,次の各問に答えよ.

(1)$k=0$である確率を求めよ.
(2)$k=1$である確率を求めよ.
(3)$k$の期待値を求めよ.
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
上智大学 私立 上智大学 2014年 第3問
$1$から$10$までの数字を$1$つずつ書いた$10$枚のカードを数字の小さい順に左から右に並べる.この中から$3$枚を無作為に選び,いずれのカードも元の位置と異なる位置に置くという操作を考える.この操作を$2$回以上続けて行う場合,$2$回目以降はカードの並びを一番最初の状態に戻すことはせず,$1$回前の操作で置き換えられた状態から$3$枚を無作為に選ぶ.また,選んだ$3$枚のカードについて元の位置と異なる位置への置き方が複数あるとき,いずれの置き方も等しい確率で選ばれるものとする.置き換えの操作を$n$回続けて行ったとき,一番左のカードが$10$である確率を$P_n$で表す.

(1)$\displaystyle P_1=\frac{[ハ]}{[ヒ]}$である.
(2)$n$回の操作の後で一番左のカードが$10$であり,$(n+1)$回目の操作の後も一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[フ]}{[ヘ]}P_n$となる.
(3)$n$回の操作の後で一番左のカードが$10$ではなく,$(n+1)$回目の操作の後で一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[ホ]P_n+[マ]}{[ミ]}$となる.
(4)$P_{n+1}$を$P_n$の式で表すと
\[ P_{n+1}=\frac{[ム]}{[メ]}P_n+\frac{[モ]}{[ヤ]} \]
となる.
(5)$\displaystyle P_n=\frac{[ユ]}{[ヨ]} \left( \frac{[ラ]}{[リ]} \right)^n+\frac{[ル]}{[レ]}$である.
横浜市立大学 公立 横浜市立大学 2014年 第4問
$n$を$4$以上の整数とする.$1$番から$n$番までの番号がふられたボールが$1$つずつある.このとき,以下の問いに答えよ.

(1)以下のような操作でボールを$1$列に並べる:

(i) $1$番のボールを適当な位置におく.
(ii) $2$番のボールを$1$番のボールの左または右に同じ確率でおく.
(iii) $3$番のボールをすでに並んでいる$2$つのボールの左または間または右に同じ確率でおく.
\mon[$\tokeishi$] 以下$n$番まで番号順に,$k$番のボールを,すでに並んでいるボールの一番左または間または一番右に同じ確率でおく,ことを繰り返す.

例えば,左から$2$番,$1$番,$3$番のボールが並んでいるとき,$4$番のボールが$2$番と$1$番の間におかれる確率は$\displaystyle \frac{1}{4}$である.
$n$番のボールをおき終えたとき,$i$番のボールが左から$j$番目に並ぶ確率は$\displaystyle \frac{1}{n}$であることを証明せよ.ただし,$i$と$j$は$1$以上,$n$以下の整数とする.
(2)$(1)$のボールの列を,(左から)番号順に並び替えるため,以下の操作を考える:
隣り合った$2$つのボールの組で,左のボールの番号が右のそれより大きなもの(入れ替え可能な組と呼ぶ)が存在するとき,そのようなボールの組を$1$つ選び,入れ替える.
入れ替え可能な組が複数あった場合に,入れ替える組をどのように選んだとしても,この操作を繰り返すことにより,すべてのボールの列は,必ず番号順の列になることを証明せよ.
(3)$(2)$の操作の回数は,入れ替える組の選び方とは無関係であることを証明せよ.
(4)$(2)$においてボールの列を番号順に並べ替えるとき,$i$番のボールを,より番号の小さいボールと入れ替える回数の期待値を$E_i$とする.このとき,
\[ \sum_{i=1}^n E_i \]
を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2012年 第1問
$3$枚のカードに,$1$,$2$,$3$の各数字が書かれている.この$3$枚のカードから$1$枚引き,そこに書いてある数字を記録してカードを戻す,という作業を$n$回繰り返す.ただし,何回目の作業であっても,どのカードを引く確率も等しいとする.一度も引かなかったカードがあった場合に限り,$n$回引いて得た数字のうち一番大きいものを得点として獲得するものとする.\\
例えば$n=5$のとき,引いた数字が順に$2$,$2$,$3$,$3$,$2$であれば$3$点を獲得し,$2$,$1$,$2$,$2$,$3$であれば得点は獲得しない.\\
以下の問いに答えよ.

(1)$1$点を獲得する確率を求めよ.
(2)$2$点を獲得する確率を求めよ.
(3)$3$点を獲得する確率を求めよ.
(4)獲得する得点の期待値が最大になるような作業の回数$n$の値を全て求め,そのときの期待値を求めよ.
スポンサーリンク

「一番」とは・・・

 まだこのタグの説明は執筆されていません。