タグ「一定」の検索結果

7ページ目:全92問中61問~70問を表示)
金沢工業大学 私立 金沢工業大学 2012年 第4問
座標平面上を運動する点$\mathrm{P}$の時刻$t$における座標$(x,\ y)$が
\[ x=2t-\sin 2t,\quad y=1-\cos 2t \quad (0 \leqq t \leqq \pi) \]
で表される.

(1)点$\mathrm{P}$の時刻$\displaystyle t=\frac{\pi}{6}$における速度は$([コ],\ \sqrt{[サ]})$である.
(2)点$\mathrm{P}$の速さは$2 \sqrt{[シ]([ス]-\cos [セ]t)}$であり,その速さは$\displaystyle t=\frac{\pi}{[ソ]}$のとき最大値$[タ]$をとる.
(3)点$\mathrm{P}$の加速度は,その大きさが一定の値$[チ]$をとり,$x$軸の正の方向を向くのは$\displaystyle t=\frac{\pi}{[ツ]}$のときであり,$x$軸の負の方向を向くのは$\displaystyle t=\frac{[テ]}{[ト]} \pi$のときである.
中部大学 私立 中部大学 2012年 第2問
沖合から湾に面した海岸に向かって直線的にモーターボートを走らせている.モーターボートの速度は一定で時速$36 \; \mathrm{km}$である.モーターボートの進行方向の右前方に,湾から突き出した岬があり灯台が立っている.モーターボートの進行方向から灯台に向かって測った角度が$\theta (0^\circ<\theta<45^\circ)$である地点を$\mathrm{A}$とする.

(1)$\mathrm{A}$点から$11$分$40$秒後に角度が$90^\circ-\theta$である地点$\mathrm{B}$を通過した.$\mathrm{A}$と$\mathrm{B}$の距離を求めよ.
(2)モーターボートがさらに進んで,角度が$90^\circ$となる地点$\mathrm{C}$に到達した.$\mathrm{A}$から$\mathrm{C}$までかかった時間は$26$分$40$秒であった.灯台と$\mathrm{C}$点までの距離を求めよ.
(3)灯台と$\mathrm{A}$点の距離を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2012年 第2問
糸の長さ$L$,おもりの質量$m$の振り子の振れの角(水平面に垂直な直線と糸がなす角)の大きさを$\theta$とすると,$\theta$は時刻$t$の関数として
\[ mL \frac{d^2 \theta}{dt^2}=-mg \theta \cdots\cdots (*) \]
を満たす.ただし重力加速度$g$は一定とする.

(1)$\theta=a \cos (2 \pi \nu t+\delta)$(ただし$\nu,\ a,\ \delta$は定数で$\nu>0$,$a \neq 0$)が時刻$t=t_1$で極大値をとり,その後初めて極小値をとる時刻を$t=t_2$とするとき,$t_2-t_1=[$4$]$である.
(2)$(1)$の$\theta$が$(*)$を満たすとき,$\nu$を求めると$\nu=[$5$]$である.
(3)$(2)$の$\theta$に対して時刻$t$におけるこの振り子のエネルギー$E(t)$を
\[ E(t)=\frac{1}{2} mL^2 \left( \frac{d\theta}{dt} \right)^2+\frac{1}{2}mgL \theta^2 \]
で与えるものとする.このとき$\displaystyle \frac{dE(t)}{dt}=[$6$]$である.
獨協大学 私立 獨協大学 2012年 第2問
今年から毎年初めに一定の金額$a$円を,複利法により一定の年利率$r$で積み立てるとする.今年から$n$年後の元利合計について次の問題に答えよ.

(1)今年の初めに預金する$a$円は,$1$年後いくらになるか.
(2)今年の初めに預金する$a$円は,$n$年後いくらになるか.
(3)来年の初めに預金する$a$円は,$n$年後いくらになるか.
(4)$n$年後の元利合計はいくらになるか.ただし,預金する回数は全部で$n$回とする.
獨協大学 私立 獨協大学 2012年 第3問
放物線$y=-x^2+1$上の点$(\alpha,\ -\alpha^2+1)$における接線を$\ell_1$とし,点$(\beta,\ -\beta^2+1)$における接線を$\ell_2$とする.ただし,$\alpha<0<\beta$で$\beta-\alpha=c$(一定)とする.

(1)接線$\ell_1$と$y$軸および放物線で囲まれる部分の面積$S_1$を$\alpha$で表せ.
(2)接線$\ell_2$と$y$軸および放物線で囲まれる部分の面積$S_2$を$\beta$で表せ.
(3)面積の和$S_1+S_2$が最小となるときの$\alpha,\ \beta$とそのときの最小値を$c$で表せ.
岐阜大学 国立 岐阜大学 2011年 第5問
放物線$y=x^2+4x$を$C$とする.$C$上の$x$座標が$p$である点における接線を$\ell$とする.ただし,$p$は正の定数とする.以下の問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)接線$\ell$と$y$軸との交点を通る$C$の接線を$m$とする.ただし,$m$と$\ell$は異なるとする.$m$の方程式を求めよ.
(3)放物線$C$と接線$\ell$および$y$軸とで囲まれた部分の面積を$S$とし,放物線$C$と接線$m$および$y$軸とで囲まれた部分の面積を$T$とする.$\displaystyle \frac{T}{S}$の値は$p$によらず一定となることを示せ.
大阪教育大学 国立 大阪教育大学 2011年 第1問
平行四辺形OABCは$\text{OA}=\text{BC}=1,\ \text{OC}=\text{AB}=r,\ \angle \text{AOC}=\theta$を満たす.ただし,$r>0$かつ$0<\theta<\pi$とする.このとき,次の問に答えよ.

(1)$\text{OB}^2+\text{AC}^2$は$\theta$の値によらず一定であることを示し,その値を$r$を用いて表せ.
(2)$\theta$が$0<\theta<\pi$の範囲を動くとき,$\text{OB}+\text{AC}$の最大値とそのときの$\theta$の値を求めよ.
滋賀医科大学 国立 滋賀医科大学 2011年 第3問
文字$x,\ y,\ z$の任意の整式$A$に対して,$x,\ y,\ z$をそれぞれ$\sin \theta,\ \cos \theta,\ \tan \theta$に置き換えて得られる$\theta$の関数を$\widetilde{A}(\theta)$で表す.例えば,
\[ \begin{array}{lll}
P=x^5+z^4-xyz & \text{ならば} & \widetilde{P}(\theta)=\sin^5 \theta+\tan^4 \theta-\sin \theta \cos \theta \tan \theta, \\
P=x^2+y^2,\ Q=1 & \text{ならば} & \widetilde{P}(\theta)=\sin^2 \theta+\cos^2 \theta=1=\widetilde{Q}(\theta)
\end{array} \]
である.ただし$\theta$の関数の定義域は$\displaystyle 0 \leqq \theta \leqq 2\pi,\ \theta \neq \frac{\pi}{2},\ \frac{3\pi}{2}$とする.

(1)$P$を$x,\ y,\ z$の整式とする.$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$y,\ z$の整式$Q$が存在することを示せ.
(2)$P$を$x,\ y,\ z$の整式とする.$\widetilde{P}(0)=\widetilde{P}(\pi)$ならば,$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$x,\ z$の整式$Q$が存在することを示せ.
(3)$P$を$x,\ y,\ z$の整式とする.$\displaystyle \theta \to \frac{\pi}{2}$のとき,および$\displaystyle \theta \to \frac{3\pi}{2}$のとき,$\widetilde{P}(\theta)$がそれぞれ収束するならば,$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$x,\ y$の整式$Q$が存在することを示せ.収束とは,一定の実数に限りなく近づくことである.
明治大学 私立 明治大学 2011年 第1問
次の空欄$[ア]$から$[カ]$に当てはまるものをそれぞれ入れよ.ただし$\log$は自然対数,また$e$はその底である.

(1)円柱$C$の底面の半径を$r$,高さを$h$とする.$C$の体積が$V$であるとき$C$の表面積$S$を$r$と$V$で表せば
\[ S=2 \pi r^{[ア]}+2Vr^{[イ]} \]
となる.したがって体積$V$を一定にしたまま$S$を最小にするためには
\[ r=\left( \frac{V}{[ウ]} \right)^{\frac{1}{3}} \]
とすればよい.このとき$r$と$h$の間には$r=[エ]h$の関係がある.
(2)次の問いに答えよ.

(i) $\displaystyle \lim_{n \to \infty} \frac{\log (n+5)}{\log (n+2)}=[オ]$
(ii) 数列$\{a_n\},\ \{b_n\}$をそれぞれ
\[ a_n=(n+5)^{-2n+1},\quad b_n=\frac{1}{n \log (n+2)} \]
で定める.このとき
\[ \lim_{n \to \infty} (a_n)^{b_n}=[カ] \]
となる.
立教大学 私立 立教大学 2011年 第3問
座標平面上の点$\mathrm{A}(1,\ 1)$を中心とする円$(x-1)^2+(y-1)^2=1$上を,点$\mathrm{P}_0(2,\ 1)$から出発して一定の速度で反時計回りに動く点$\mathrm{P}$と,座標平面上の点$\mathrm{B}(-1,\ -1)$を中心とするもう$1$つの円$(x+1)^2+(y+1)^2=1$上を,点$\mathrm{Q}_0(-1,\ 0)$から出発して反時計回りに動く点$\mathrm{Q}$について考える.点$\mathrm{P}$と点$\mathrm{Q}$が各円周上を進む速度は等しいものとする.このとき,次の問に答えよ.

(1)図に示すように$\angle \mathrm{P}_0 \mathrm{AP}$ならびに$\angle \mathrm{Q}_0 \mathrm{BQ}$を$\theta$とするとき,点$\mathrm{P}$と点$\mathrm{Q}$それぞれの座標を$\theta$を用いて表せ.
(2)線分$\mathrm{PQ}$の長さの最大値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_1$と点$\mathrm{Q}$の位置$\mathrm{Q}_1$それぞれの座標を求めよ.また,線分$\mathrm{PQ}$の長さの最小値と,そのときの点$\mathrm{P}$の位置$\mathrm{P}_2$と点$\mathrm{Q}$の位置$\mathrm{Q}_2$それぞれの座標を求めよ.
(3)$(2)$で求めた$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{Q}_1$,$\mathrm{Q}_2$について,$4$点$\mathrm{P}_1$,$\mathrm{Q}_1$,$\mathrm{Q}_2$,$\mathrm{P}_2$がつくる四角形の面積を求めよ.
(図は省略)
スポンサーリンク

「一定」とは・・・

 まだこのタグの説明は執筆されていません。